Rosa di Felice

Learn More
The width of the DNA minor groove varies with sequence and can be a major determinant of DNA shape recognition by proteins. For example, the minor groove within the center of the Fis-DNA complex narrows to about half the mean minor groove width of canonical B-form DNA to fit onto the protein surface. G/C base pairs within this segment, which is not(More)
We present a molecular dynamics investigation of guanine quadruple helices based on classical force fields. We analyze the dependence of the helical conformation on various compositional factors, such as the length of the G4-wire, as well as the incorporation into the helix channel of alkali ions of different species and in different amounts. In compliance(More)
Synchrotron radiation circular dichroism (SRCD) spectra were recorded for a family of 12 DNA duplexes that all contain nine adenines (A) and nine thymines (T) in each strand but in different combinations. The total number of AT Watson-Crick (WC) base pairs is constant (18), but the number of cross-strand (CS) hydrogen bonds between A and T varies between 0(More)
Guanine-rich oligonucleotides can form a unique G-quadruplex (GQ) structure with stacking units of four guanine bases organized in a plane through Hoogsteen bonding. GQ structures have been detected in vivo and shown to exert their roles in maintaining genome integrity and regulating gene expression. Understanding GQ conformation is important for(More)
EF-hand calcium sensors respond structurally to changes in intracellular Ca(2+) concentration, triggering diverse cellular responses and resulting in broad interactomes. Despite impressive advances in decoding their structure-function relationships, the folding mechanism of neuronal calcium sensors is still elusive. We used single-molecule optical tweezers(More)
The adsorption of cysteine on the (111) surface of gold has been studied by means of periodic supercell density-functional theory calculations. A number of different adsorption modes are examined, including adsorption through the thiol group in either thiolate or disulfide form, and adsorption through both the thiol and amino functional groups. We find that(More)
DNA and DNA-based polymers are of interest in molecular electronics because of their versatile and programmable structures. However, transport measurements have produced a range of seemingly contradictory results due to differences in the measured molecules and experimental set-ups, and transporting significant current through individual DNA-based molecules(More)
We present a detailed study of the optical absorption spectra of DNA bases and base pairs, carried out by means of time dependent density functional theory. The spectra for the isolated bases are compared to available theoretical and experimental data and used to assess the accuracy of the method and the quality of the exchange-correlation functional. Our(More)
Attempts to resolve the energy-level structure of single DNA molecules by scanning tunnelling spectroscopy span over the past two decades, owing to the unique ability of this technique to probe the local density of states of objects deposited on a surface. Nevertheless, success was hindered by extreme technical difficulties in stable deposition and(More)
By combining experimental and theoretical approaches, we study the adsorption of pentacene on copper as a model for the coupling between aromatic molecules and metal surfaces. Our results for the interface electronic structure are not compatible with a purely physisorption picture, which is conventionally employed for such systems. Nay, we demonstrate(More)