Learn More
The p53 protein is the most studied tumor suppressor and the p53 pathway has been shown to mediate cellular stress responses that are disrupted when cancer develops. After DNA damage, p53 is activated as transcription factor to directly induce the expression of target genes involved in cell-cycle arrest, DNA repair, senescence and, importantly, apoptosis.(More)
Good manufacturing practices guidelines require safer and standardized cell substrates especially for those cell therapy products to treat ocular diseases where fibroblasts are used as feeder layers. However, if these are unavailable for stem cells culturing, murine fibroblasts are regularly used, raising critical issues as accidentally transplanting(More)
BACKGROUND Hypoxia inducible factor-1α (HIF-1α) is responsible for the majority of HIF-1-induced gene expression changes under hypoxia and for the "angiogenic switch" during tumor progression. HIF-1α is often upregulated in tumors leading to more aggressive tumor growth and chemoresistance, therefore representing an important target for antitumor(More)
HIPK2 is a stress-induced kinase and a transcriptional corepressor that functionally cooperates with p53 to suppress cancer. Activation of the p53 proapoptotic function requires a cascade of phosphorylations and acetylations, and HIPK2 takes part in both modifications in that it phosphorylates p53 Ser46 and induces p53 Lys382 acetylation. Here, to further(More)
BACKGROUND Activation of p53-mediated gene transcription is a critical cellular response to DNA damage and involves a phosphorylation-acetylation cascade of p53. The discovery of differences in the response to different agents raises the question whether some of the p53 oncosuppressor functions might be exerted by different posttranslational modifications.(More)
BACKGROUND The tumor suppressor homeodomain-interacting protein kinase-2 (HIPK2) by phosphorylating serine 46 (Ser46) is a crucial regulator of p53 apoptotic function. HIPK2 is also a transcriptional co-repressor of hypoxia-inducible factor-1alpha (HIF-1alpha) restraining tumor angiogenesis and chemoresistance. HIPK2 can be deregulated in tumors by several(More)
About half of cancers sustain mutations in the TP53 gene, whereas the other half maintain a wild-type p53 (wtp53) but may compromise the p53 response because of other alterations. Homeodomain-interacting protein kinase-2 (HIPK2) is a positive regulator of p53 oncosuppressor function. Here, we show, by microarray analysis, that wtp53 lost the target gene(More)
Absence of p53 expression or expression of mutant p53 (mtp53) are common in human cancers and are associated with increased cancer resistance to chemo- and radiotherapy. Therefore, significant efforts towards pharmaceutical reactivation of defective p53 pathways are underway. We previously reported that, in HIPK2 knockdown background, p53 undergoes(More)
The maintenance of p53 transactivation activity is important for p53 apoptotic function. We have shown that stable knockdown of HIPK2 induces p53 misfolding with inhibition of p53 target gene transcription. In this study we established a lentiviral-based system for doxycyclin (Dox)-induced conditional interference of HIPK2 expression to evaluate the(More)
Fetal lung adenocarcinoma (FLAC) is a rare variant of lung adenocarcinoma. Studies regarding FLAC have been based only on histopathological observations, thus representative in vitro models of FLAC cultures are unavailable. We have established and characterized a human primary FLAC cell culture, exploring its biology, chemosensitivity, and migration. FLAC(More)