Rosa M. Badia

Learn More
In this work we present Cell superscalar (CellSs) which addresses the automatic exploitation of the functional parallelism of a sequential program through the different processing elements of the Cell BE architecture. The focus in on the simplicity and flexibility of the programming model. Based on a simple annotation of the source code, a source to source(More)
This paper presents a novel analysis approach for bounded Petri nets. The net behavior is modeled by boolean functions, thus reducing reasoning about Petri nets to boolean calculation. The state explosion problem is managed by using Binary Decision Diagrams (BDDs), which are capable to represent large sets of markings in small data structures. The ability(More)
Parallel programming on SMP and multi-core architectures is hard. In this paper we present a programming model for those environments based on automatic function level parallelism that strives to be easy, flexible, portable, and performant. Its main trait is its ability to exploit task level parallelism by analyzing task dependencies at run time. We present(More)
We present fundamental challenges for scalable and dependable service platforms and architectures that enable flexible and dynamic provisioning of cloud services. Our findings are incorporated in a toolkit targeting the cloud service and infrastructure providers. The innovations behind the toolkit are aimed at optimizing the whole service life cycle,(More)
Clusters of GPUs are emerging as a new computational scenario. Programming them requires the use of hybrid models that increase the complexity of the applications, reducing the productivity of programmers. We present the implementation of OmpSs for clusters of GPUs, which supports asynchrony and heterogeneity for task parallelism. It is based on annotating(More)
We present \emph{Task Super scalar}, an abstraction of instruction-level out-of-order pipeline that operates at the task-level. Like ILP pipelines, which uncover parallelism in a sequential instruction stream, task super scalar uncovers task-level parallelism among tasks generated by a sequential thread. Utilizing intuitive programmer annotations of task(More)
Cycle-accurate simulation is far too slow for modeling the expected performance of full parallel applications on large HPC systems. And just running an application on a system and observing wallclock time tells you nothing about why the application performs as it does (and is anyway impossible on yet-to-be-built systems). Here we present a framework for(More)