Learn More
Oestrogen receptor-α (ER) is the defining and driving transcription factor in the majority of breast cancers and its target genes dictate cell growth and endocrine response, yet genomic understanding of ER function has been restricted to model systems. Here we map genome-wide ER-binding events, by chromatin immunoprecipitation followed by high-throughput(More)
BACKGROUND High-throughput sequencing technology has become popular and widely used to study protein and DNA interactions. Chromatin immunoprecipitation, followed by sequencing of the resulting samples, produces large amounts of data that can be used to map genomic features such as transcription factor binding sites and histone modifications. METHODS Our(More)
The androgen receptor (AR) is a key regulator of prostate growth and the principal drug target for the treatment of prostate cancer. Previous studies have mapped AR targets and identified some candidates which may contribute to cancer progression, but did not characterize AR biology in an integrated manner. In this study, we took an interdisciplinary(More)
Chromatin immunoprecipitation with massively parallel sequencing (ChIP-seq) is widely used to identify the genomic binding sites for protein of interest. Most conventional approaches to ChIP-seq data analysis involve the detection of the absolute presence (or absence) of a binding site. However, an alternative strategy is to identify changes in the binding(More)
MOTIVATION Identification of genomic regions of interest in ChIP-seq data, commonly referred to as peak-calling, aims to find the locations of transcription factor binding sites, modified histones or nucleosomes. The BayesPeak algorithm was developed to model the data structure using Bayesian statistical techniques and was shown to be a reliable method, but(More)
Progesterone receptor (PR) expression is used as a biomarker of oestrogen receptor-α (ERα) function and breast cancer prognosis. Here we show that PR is not merely an ERα-induced gene target, but is also an ERα-associated protein that modulates its behaviour. In the presence of agonist ligands, PR associates with ERα to direct ERα chromatin binding events(More)
With the advent of ChIP-seq multiplexing technologies and the subsequent increase in ChIP-seq throughput, the development of working standards for the quality assessment of ChIP-seq studies has received significant attention. The ENCODE consortium's large scale analysis of transcription factor binding and epigenetic marks as well as concordant work on(More)
At least half of the human genome is derived from repetitive elements, which are often lineage specific and silenced by a variety of genetic and epigenetic mechanisms. Using a transchromosomic mouse strain that transmits an almost complete single copy of human chromosome 21 via the female germline, we show that a heterologous regulatory environment can(More)
The discovery of cytosine hydroxymethylation (5hmC) as a mechanism that potentially controls DNA methylation changes typical of neoplasia prompted us to investigate its behaviour in colon cancer. 5hmC is globally reduced in proliferating cells such as colon tumours and the gut crypt progenitors, from which tumours can arise. Here, we show that colorectal(More)