Learn More
Alternative exon splicing and reversible protein phosphorylation of large conductance calcium-activated potassium (BK) channels represent fundamental control mechanisms for the regulation of cellular excitability. BK channels are encoded by a single gene that undergoes extensive, hormonally regulated exon splicing. In native tissues BK channels display(More)
Synaptic terminals and neuroendocrine cells are packed with secretory vesicles, only a few of which are docked at the plasma membrane and readily releasable. The remainder are thought to constitute a large cytoplasmic reserve pool awaiting recruitment into the readily releasable pool (RRP) for exocytosis. How vesicles are prioritized in recruitment is still(More)
Interactions between host plant resistance and biological control may be advantageous or disadvantageous for pest management. Turfgrass cultivars have rarely been tested for extrinsic resistance characteristics such as occurrence and performance of beneÞcial arthropods on plants with resistance to known turf pests. Among six turfgrass cultivars tested, the(More)
NMDA receptors (NMDARs) mediate ischemic brain damage, for which interactions between the C termini of NR2 subunits and PDZ domain proteins within the NMDAR signaling complex (NSC) are emerging therapeutic targets. However, expression of NMDARs in a non-neuronal context, lacking many NSC components, can still induce cell death. Moreover, it is unclear(More)
Eukaryotic membrane trafficking is a conserved process under tight temporal and spatial regulation in which the fusion of membranes is driven by the formation of the ternary SNARE complex. Syntaxin 1a, a core component of the exocytic SNARE complex in neurons and neuroendocrine cells, is regulated directly by munc18-1, its cognate Sec1p/munc18 (SM) protein.(More)
The spatial distribution of the target (t-)SNARE proteins (syntaxin and SNAP-25) on the plasma membrane has been extensively characterized. However, the protein conformations and interactions of the two t-SNAREs in situ remain poorly defined. By using super-resolution optical techniques and fluorescence lifetime imaging microscopy, we observed that within(More)
Membrane trafficking in eukaryotic cells must be strictly regulated both temporally and spatially. The assembly at the plasma membrane of the ternary SNARE complex, formed between syntaxin1a, SNAP-25 and VAMP, is essential for efficient exocytotic membrane fusion. These exocytotic SNAREs are known to be highly promiscuous in their interactions with other(More)
Intercellular communication is commonly mediated by the regulated fusion, or exocytosis, of vesicles with the cell surface. SNARE (soluble N-ethymaleimide sensitive factor attachment protein receptor) proteins are the catalytic core of the secretory machinery, driving vesicle and plasma membrane merger. Plasma membrane SNAREs (tSNAREs) are proposed to(More)
NMDA receptors (NMDARs) mediate ischemic brain damage, in part through interactions of the PDZ ligand of NR2 subunits with the PDZ domain proteins PSD-95 and neuronal nitric oxide synthase located within the NMDAR signaling complex. We have recently shown that this PDZ ligand-dependent pathway promotes neuronal death via p38 activation. A peptide mimetic of(More)
Exocytosis is regulated by NO in many cell types, including neurons. In the present study we show that syntaxin 1a is a substrate for S-nitrosylation and that NO disrupts the binding of Munc18-1 to the closed conformation of syntaxin 1a in vitro. In contrast, NO does not inhibit SNARE {SNAP [soluble NSF (N-ethylmaleimide-sensitive fusion protein) attachment(More)