Roozbeh Mottaghi

Learn More
3D object detection and pose estimation methods have become popular in recent years since they can handle ambiguities in 2D images and also provide a richer description for objects compared to 2D object detectors. However, most of the datasets for 3D recognition are limited to a small amount of images per category or are captured in controlled environments.(More)
In this paper we study the role of context in existing state-of-the-art detection and segmentation approaches. Towards this goal, we label every pixel of PASCAL VOC 2010 detection challenge with a semantic category. We believe this data will provide plenty of challenges to the community, as it contains 520 additional classes for semantic segmentation and(More)
Detecting objects becomes difficult when we need to deal with large shape deformation, occlusion and low resolution. We propose a novel approach to i) handle large deformations and partial occlusions in animals (as examples of highly deformable objects), ii) describe them in terms of body parts, and iii) detect them when their body parts are hard to detect(More)
In this paper we are interested in how semantic segmentation can help object detection. Towards this goal, we propose a novel deformable part-based model which exploits region-based segmentation algorithms that compute candidate object regions by bottom-up clustering followed by ranking of those regions. Our approach allows every detection hypothesis to(More)
Two less addressed issues of deep reinforcement learning are (1) lack of generalization capability to new goals, and (2) data inefficiency, i.e., the model requires several (and often costly) episodes of trial and error to converge, which makes it impractical to be applied to real-world scenarios. In this paper, we address these two issues and apply our(More)
In this work, we focus on the problem of tracking objects under significant viewpoint variations, which poses a big challenge to traditional object tracking methods. We propose a novel method to track an object and estimate its continuous pose and part locations under severe viewpoint change. In order to handle the change in topological appearance(More)
In this paper, we study the challenging problem of predicting the dynamics of objects in static images. Given a query object in an image, our goal is to provide a physical understanding of the object in terms of the forces acting upon it and its long term motion as response to those forces. Direct and explicit estimation of the forces and the motion of(More)
We contribute a large scale database for 3D object recognition, named ObjectNet3D, that consists of 100 categories, 90,127 images, 201,888 objects in these images and 44,147 3D shapes. Objects in the 2D images in our database are aligned with the 3D shapes, and the alignment provides both accurate 3D pose annotation and the closest 3D shape annotation for(More)
We describe a novel method whereby a particle filter is used to create a potential field for robot control without prior clustering. We show an application of this technique to control a team of mobile robots to cooperatively locate and track a moving target. The particle filter models a probability distribution over the estimated location of the target,(More)
Despite the fact that object detection, 3D pose estimation, and sub-category recognition are highly correlated tasks, they are usually addressed independently from each other because of the huge space of parameters. To jointly model all of these tasks, we propose a coarse-to-fine hierarchical representation, where each level of the hierarchy represents(More)