Learn More
Accumulating evidence indicates that phobic and posttraumatic anxiety disorders likely result from a failure to extinguish fear memories. Extinction normally depends on a new learning that competes with the original fear memory and is driven by medial prefrontal cortex (mPFC) projections to the amygdala. Although mPFC stimulation was reported to inhibit the(More)
In humans, learning to produce correct visually guided movements to adapt to new sensorimotor conditions requires the formation of an internal model that represents the new transformation between visual input and the required motor command. When the new environment requires adaptation to directional errors, learning generalizes poorly to untrained locations(More)
Memory consolidation is thought to involve the gradual transfer of transient hippocampal-dependent traces to distributed neocortical sites via the rhinal cortices. Recently, medial prefrontal (mPFC) neurons were shown to facilitate this process when their activity becomes synchronized. However, the mechanisms underlying this enhanced synchrony remain(More)
Many recent studies describe learning-related changes in sensory and motor areas, but few have directly probed for improvement in neuronal coding after learning. We used information theory to analyze single-cell activity from the primary motor cortex of monkeys, before and after learning a local rotational visuomotor task. We show that after learning,(More)
Acquisition and retention of sensorimotor skills have been extensively investigated psychophysically, but little is known about the underlying neuronal mechanisms. Here we examine the evolution of neural activity associated with adaptation to new kinematic tasks in two cortical areas: the caudal supplementary motor area (SMA proper), and the primary motor(More)
Emotions generally facilitate memory, an effect mediated by the basolateral amygdala (BLA). To study the underlying mechanisms, we recorded BLA, perirhinal and entorhinal neurons during an appetitive trace-conditioning task. We focused on the rhinal cortices because they constitute the interface between the hippocampus, a mediator of memory consolidation,(More)
Memory formation requires the placement of experienced events in the same order in which they appeared. A large body of evidence from human studies indicates that structures in the medial temporal lobe are critically involved in forming and maintaining such memories, and complementing evidence from lesion and electrophysiological work in animals support(More)
The rhinal cortices contribute to memory formation by integrating and transferring neocortical information to the hippocampus. Rhinal contributions to memory are likely influenced by the amygdala because strong reciprocal connections exist between these structures. In light of previous data showing that oscillations regulate neuronal activity during memory(More)
Neurons in all brain areas exhibit variability in their spiking activity. Although part of this variability can be considered as noise that is detrimental to information processing, recent findings indicate that variability can also be beneficial. In particular, it was suggested that variability in the motor system allows for exploration of possible motor(More)
Inner-product operators, often referred to as kernels in statistical learning, define a mapping from some input space into a feature space. The focus of this letter is the construction of biologically motivated kernels for cortical activities. The kernels we derive, termed Spikernels, map spike count sequences into an abstract vector space in which we can(More)