Rony Jude

Learn More
Fertility of stallions is of high economic importance, especially for large breeding organisations and studs. Breeding schemes with respect to fertility traits and selection of stallions at an early stage may be improved by including molecular genetic markers associated with traits. The genes coding for equine cysteine-rich secretory proteins (CRISPs) are(More)
During fetal development neural-crest-derived melanoblasts migrate across the entire body surface and differentiate into melanocytes, the pigment-producing cells. Alterations in this precisely regulated process can lead to white spotting patterns. White spotting patterns in horses are a complex trait with a large phenotypic variance ranging from minimal(More)
The cysteine-rich secretory protein (CRISP) family consists of three members called acidic epididymal glycoprotein 1 (AEG1), AEG2, and testis-specific protein 1 (TPX1), which share 16 conserved cysteine residues at their C-termini. The CRISP proteins are primarily expressed in different sections of the male genital tract and are thought to mediate cell-cell(More)
The tobiano white-spotting pattern is one of several known depigmentation phenotypes in horses and is desired by many horse breeders and owners. The tobiano spotting phenotype is inherited as an autosomal dominant trait. Horses that are heterozygous or homozygous for the tobiano allele (To) are phenotypically indistinguishable. A SNP associated with To had(More)
Variants in the EDNRB, KIT, MITF, PAX3 and TRPM1 genes are known to cause white spotting phenotypes in horses, which can range from the common white markings up to completely white horses. In this study, we investigated these candidate genes in 169 horses with white spotting phenotypes not explained by the previously described variants. We identified a(More)
White spotting phenotypes in horses can range in severity from the common white markings up to completely white horses. EDNRB, KIT, MITF, PAX3 and TRPM1 represent known candidate genes for such phenotypes in horses. For the present study, we re-investigated a large horse family segregating a variable white spotting phenotype, for which conventional Sanger(More)
Acidic epididymal glycoprotein 1 (AEG1), also called cysteine-rich secretory protein 1 (CRISP1), is a member of the CRISP protein family which is characterized by 16 conserved cysteine residues at the C-terminus. The CRISP proteins are expressed in the male genital tract and are thought to be involved in sperm-egg fusion. Therefore, their genes are of(More)
Early pregnancy loss is a major reason for low reproductive efficiency in the horse. In humans and mice, low numbers of regulatory T cells (Treg cells) are linked to miscarriage. The percentage of Treg cells in oestrous mares at the start of the breeding season was evaluated in relation to the outcome of subsequent pregnancy. For identification and(More)
  • 1