Learn More
CD44 is a ubiquitous multistructural and multifunctional cells surface adhesion molecule involved in cell-cell and cell-matrix interactions. Twenty exons are involved in the genomic organization of this molecule. The first five and the last 5 exons are constant, whereas the 10 exons located between these regions are subjected to alternative splicing,(More)
The p53 tumor suppressor protein plays a crucial role in regulating cell growth following exposure to various stress stimuli. p53 induces either growth arrest, which prevents the replication of damaged DNA, or programmed cell death (apoptosis), which is important for eliminating defective cells. Whether the cell enters growth arrest or undergoes apoptosis,(More)
Phosphorylation of the p53 tumor suppressor protein is likely to play an important role in regulating its activity. To study the regulatory role of potential phosphorylation sites within the N-terminal transactivation domain of human p53 (hp53), a series of p53 serine mutants were evaluated for transcriptional transactivation and sequence specific DNA(More)
p53 is regarded as a central player in tumour suppression, as it controls programmed cell death (apoptosis) as well as cellular senescence. While apoptosis eliminates cells at high risk for oncogenic transformation, senescence acts as a barrier to tumourigenesis by imposing irreversible cell cycle arrest. p53 can act directly or indirectly at multiple(More)
Controversy surrounds neutrophil function in cancer because neutrophils were shown to provide both pro- and antitumor functions. We identified a heterogeneous subset of low-density neutrophils (LDNs) that appear transiently in self-resolving inflammation but accumulate continuously with cancer progression. LDNs display impaired neutrophil function and(More)
Tumor progression is substantially dependent on network of multiple factors, including adhesion and homing molecules, which support the malignant metastatic spread. CD44, one of the adhesion/homing molecules, has attracted much attention not only because it is expressed on many types of tumors, but also owing to its numerous functions, such as supporting(More)
Upon exposure to stress signals, the p53 tumor suppressor protein is stabilized and induces growth suppression. p53 activities are efficiently inhibited by the Mdm2 oncoprotein through an autoregulatory feedback loop. In addition, Mdm2 promotes p53 degradation, thereby terminating its growth inhibitory signal. Hence, p53 exerts its effects during the(More)
The p53 protein is subject to Mdm2-mediated degradation by the ubiquitin-proteasome pathway. This degradation requires interaction between p53 and Mdm2 and the subsequent ubiquitination and nuclear export of p53. Exposure of cells to DNA damage results in the stabilization of the p53 protein in the nucleus. However, the underlying mechanism of this effect(More)
Several mechanisms have been suggested to account for the survival of the semiallogeneic fetus in the maternal uterus. However, no data are available to explain how the blastocyst resists the high number of macrophages in the uterus at the time of implantation. The present study examines the in vitro development of murine 3.5-day-old syngeneic or(More)