Learn More
The FAD-dependent NAD(P)H oxidase from Lactobacillus sanfrancisensis (L.san-Nox2) catalyzes the oxidation of 2 equivalents of either NADH or NADPH and reduces 1 equivalent of O(2) to yield 2 equivalents of water. During steady-state turnover only 0.5% of the reducing equivalents are detected in solution as hydrogen peroxide, suggesting that it is not(More)
This study reports the first successful recombinant expression of cationic antimicrobial peptides human beta-defensin-26 and human beta-defensin-27 in Escherichia coli. HBD26 and HBD27 genes were synthesized through codon optimization, and each gene was then cloned into the expression vector pET32, which feature fusion protein thioredoxin at the N-terminal.(More)
One major challenge in biofuel production, including biobutanol production, is the low tolerance of the microbial host towards increasing biofuel concentration during fermentation. Here, we have demonstrated that Escherichia coli 1-butanol tolerance can be greatly enhanced through random mutagenesis of global transcription factor cyclic AMP receptor protein(More)
The presence of acetate exceeding 5 g/L is a major concern during E. coli fermentation due to its inhibitory effect on cell growth, thereby limiting high-density cell culture and recombinant protein production. Hence, engineered E. coli strains with enhanced acetate tolerance would be valuable for these bioprocesses. In this work, the acetate tolerance of(More)
Graphene oxide (GO) is a promising precursor to produce graphene-family nanomaterials for various applications. Their potential health and environmental impacts need a good understanding of their cellular interactions. Many factors may influence their biological interactions with cells, and the lateral dimension of GO sheets is one of the most relevant(More)
Nanotechnology-inspired biocatalyst systems have attracted a lot of attention in enzyme immobilization recently. Theoretically, nanomaterials are ideal supporting materials because they can provide the upper limits on enzyme-efficiency-determining factors such as surface area/volume ratio, enzyme loading capacity and mass transfer resistance. However,(More)
The naturally existing microbial hosts can rarely satisfy industrial requirements, thus there has always been an intense effort in strain engineering to meet the needs of these bioprocesses. Here, in this work, we want to prove the concept that engineering global transcription factor cAMP receptor protein (CRP) of Escherichia coli can improve cell(More)
Bioprocesses such as production of organic acids or acid hydrolysis of bioresources during biofuel production often suffer limitations due to microbial sensitivity under acidic conditions. Approaches for improving the acid tolerance of these microbes have mainly focused on using metabolic engineering tools. Here, we tried to improve strain acidic tolerance(More)
A major challenge in bioethanol fermentation is the low tolerance of the microbial host towards the end product bioethanol. Here we report to improve the ethanol tolerance of E. coli from the transcriptional level by engineering its global transcription factor cAMP receptor protein (CRP), which is known to regulate over 400 genes in E. coli. Three ethanol(More)
The objective of this study was to use protein engineering techniques to enhance the catalytic activity of glycerol dehydrogenase (GlyDH) on racemic 1, 3-butanediol (1, 3-BDO) for the bioproduction of the important pharmaceutical intermediate 4-hydroxy-2-butanone. Three GlyDH genes (gldA) from Escherichia coli K-12, Salmonella enterica, and Klebsiella(More)