Learn More
Recent years have witnessed the growing popularity of hashing in large-scale vision problems. It has been shown that the hashing quality could be boosted by leveraging supervised information into hash function learning. However, the existing supervised methods either lack adequate performance or often incur cumbersome model training. In this paper, we(More)
Although depth information plays an important role in the human vision system, it is not yet well-explored in existing visual saliency computational models. In this work, we first introduce a large scale RGBD image dataset to address the problem of data deficiency in current research of RGBD salient object detection. To make sure that most existing RGB(More)
In this paper, we propose a locality-constrained and sparsity-encouraged manifold fitting approach, aiming at capturing the locally sparse manifold structure into neighborhood graph construction by exploiting a principled optimization model. The proposed model formulates neighborhood graph construction as a sparse coding problem with the locality(More)
A picture is worth one thousand words, but what words should be used to describe the sentiment and emotions conveyed in the increasingly popular social multimedia? We demonstrate a novel system which combines sound structures from psychology and the folksonomy extracted from social multimedia to develop a large visual sentiment ontology consisting of 1,200(More)
Attribute-based query offers an intuitive way of image retrieval, in which users can describe the intended search targets with understandable attributes. In this paper, we develop a general and powerful framework to solve this problem by leveraging a large pool of weak attributes comprised of automatic classifier scores or other mid-level representations(More)
Weakly-supervised image segmentation is a challenging problemwith multidisciplinary applications in multimedia content analysis and beyond. It aims to segment an image by leveraging its image-level semantics (i.e., tags). This paper presents a weakly-supervised image segmentation algorithm that learns the distribution of spatially structural superpixel sets(More)
Visual reranking has been widely deployed to refine the quality of conventional content-based image retrieval engines. The current trend lies in employing a crowd of retrieved results stemming from multiple feature modalities to boost the overall performance of visual reranking. However, a major challenge pertaining to current reranking methods is how to(More)
View-based 3-D object retrieval and recognition has become popular in practice, e.g., in computer aided design. It is difficult to precisely estimate the distance between two objects represented by multiple views. Thus, current view-based 3-D object retrieval and recognition methods may not perform well. In this paper, we propose a hypergraph analysis(More)
With the popularization of mobile devices, recent years have witnessed an emerging potential for mobile landmark search. In this scenario, the user experience heavily depends on the efficiency of query transmission over a wireless link. As sending a query photo is time consuming, recent works have proposed to extract compact visual descriptors directly on(More)