Rongliang Wu

Learn More
Combined results of theoretical molecular dynamic simulations and in vitro spectroscopic (circular dichroism and fluorescence) studies are presented, providing the atomistic and secondary structure details of the process by which a selected small molecule may destabilize the β-sheet ordered "amyloid" oligomers formed by the model undecapeptide of amyloid(More)
Sphingosine 1-phosphate (S1P) is a lysophospholipid mediator which activates G protein-coupled sphingosine 1-phosphate receptors and thus evokes a variety of cell and tissue responses including lymphocyte trafficking, endothelial development, integrity, and maturation. We performed five all-atom 700 ns molecular dynamics simulations of the sphingosine(More)
The Formyl Peptide Receptor 1 (FPR1) is an important chemotaxis receptor involved in various aspects of host defense and inflammatory processes. We constructed a model of FPR1 using as a novel template the chemokine receptor CXCR4 from the same branch of the phylogenetic tree of G-protein-coupled receptors. The previously employed template of rhodopsin(More)
Molecular dynamics simulations have been performed on the monolayers of dodecyltrimethylammonium bromide and gemini surfactants 12-S-12 with S=3, 6, and 12 at the n-heptane/water interfaces. The normal density profiles of the interface show that the distributions of surfactants at the liquid/liquid interface are significantly broader than those at air/water(More)
The most atomistic molecular details of polymer glass transition were analyzed through the frozen torsions in our molecular dynamics simulations. Different observation times were used to determine the frozen fractions and frozen chain lengths. The glass transition temperature was found to coincide well with the temperature at which the frozen fractions were(More)
Large-scale coarse-grained molecular dynamics simulations have been performed to investigate the self-assemblies of dodecyltrimethylammonium bromide (DTAB) and gemini surfactants 12-S-12 (S = 6, 14, and 20). At the concentrations investigated, the surfactants experience fast aggregation of monomers into oligomers until the cluster numbers reach maxima. For(More)
Molecular dynamics simulations have been used to investigate the conformational transition behavior in amorphous polyethylene with different chain lengths across the glass transition temperature (T(g)). In the present study, we examined the barrier height of conformational transition rates in different states. It was found that two lines of the logarithmic(More)
The substituent group and hydrogen bonds play important roles in supramolecular self-assembly. To exploit the influential mechanism of hydrogen bonds during the dipole-dipole induced supramolecular self-assembly, some rigid azobenzene molecules with different electronegativity and hydrogen bonding capabilities were identified and designed. Different(More)
Molecular dynamics simulation has been adopted in investigation of different glass transition behaviors of the bulk and the freestanding thin films (about 8 nm) of atactic polypropylene (a-PP). For characterization of glass transition temperature (T(g)) of above systems, both the specific volume and the local conformational transition rate of the systems(More)
Molecular dynamics simulation has been performed on water/surfactant film rupture in order to investigate foam stability. A periodic boundary film model which was simulated in a lateral dimension of 8 x 8 nm(2) for 4 ns was established to stand for a part of a foam bubble. On the basis of critical film thickness, which is the lowest thickness before film(More)