#### Filter Results:

- Full text PDF available (5)

#### Publication Year

2007

2013

- This year (0)
- Last 5 years (1)
- Last 10 years (6)

#### Publication Type

#### Co-author

#### Journals and Conferences

#### Key Phrases

Learn More

By deploying dense subalgebras of l(G) we generalize the Bass conjecture in terms of Connes’ cyclic homology theory. In particular, we propose a stronger version of the l-Bass Conjecture. We prove that hyperbolic groups relative to finitely many subgroups, each of which posses the polynomial conjugacy-bound property and nilpotent periodicity property,… (More)

The property that the polynomial cohomology with coefficients of a finitely generated discrete group is canonically isomorphic to the group cohomology is called the (weak) isocohomological property for the group. In the case when a group is of type HF∞, i.e. that has a classifying space with the homotopy type of a cellular complex with finitely many cells… (More)

By deploying dense subalgebras of l(G) we generalize the Bass conjecture in terms of Connes’ cyclic homology theory. In particular, we propose a stronger version of the l-Bass Conjecture. We prove that hyperbolic groups relative to finitely many subgroups, each of which posses the polynomial conjugacy-bound property and nilpotent periodicity property,… (More)

- Ronghui Ji
- 2007

We survey the cyclic cohomology associated with various algebras related to discrete groups. We then discuss the motivation and techniques of the cyclic theory approach to various problems in algebra and analysis.

- Ronghui Ji, Crichton Ogle, Bobby Ramsey
- IJAC
- 2013

By deploying dense subalgebras of l(G) we generalize the Bass conjecture in terms of Connes’ cyclic homology theory. In particular, we propose a stronger version of the l-Bass Conjecture. We prove that hyperbolic groups relative to finitely many subgroups, each of which posses the polynomial conjugacy-bound property and nilpotent periodicity property,… (More)

- ‹
- 1
- ›