Learn More
The conjugation of arginine to proteins is a part of the N-end rule pathway of protein degradation. Three amino (N)-terminal residues--aspartate, glutamate and cysteine--are arginylated by ATE1-encoded arginyl-transferases. Here we report that oxidation of N-terminal cysteine is essential for its arginylation. The in vivo oxidation of N-terminal cysteine,(More)
The effect of long-term fertilization on soil-denitrifying communities was determined by measuring the abundance and diversity of the nitrite reductase genes nirK and nirS. Soil samples were collected from plots of a long-term fertilization experiment started in 1990, located in Taoyuan (110°72″ E, 28°52″ N), China. The treatments were no fertilizer (NF),(More)
The enzymatic conjugation of arginine to the N-termini of proteins is a part of the ubiquitin-dependent N-end rule pathway of protein degradation. In mammals, three N-terminal residues-aspartate, glutamate, and cysteine-are substrates for arginylation. The mouse ATE1 gene encodes a family of Arg-tRNA-protein transferases (R-transferases) that mediate(More)
The conjugation of arginine, by arginyl-transferase, to N-terminal aspartate, glutamate or oxidized cysteine is a part of the N-end rule pathway of protein degradation. We report that arginyl-transferase of either the mouse or the yeast Saccharomyces cerevisiae is inhibited by hemin (Fe(3+)-heme). Furthermore, we show that hemin inhibits arginyl-transferase(More)
Iron excess is closely associated with tumorigenesis in multiple types of human cancers, with underlying mechanisms yet unclear. Recently, iron deprivation has emerged as a major strategy for chemotherapy, but it exerts tumor suppression only on select human malignancies. Here, we report that the tumor suppressor protein p53 is downregulated during iron(More)
The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. Primary destabilizing N-terminal residues (Nd(p)) are recognized directly by the targeting machinery. The recognition of secondary destabilizing N-terminal residues (Nd(s)) is preceded by conjugation of an Nd(p) residue to Nd(s) of a polypeptide substrate.(More)
In mammalian cells, DNA methylation critically regulates gene expression and thus has pivotal roles in myriad of physiological and pathological processes. Here we report a novel method for targeted DNA demethylation using the widely used clustered regularly interspaced short palindromic repeat (CRISPR)-Cas system. Initially, modified single guide RNAs(More)
TRPC6 plays a crucial role in the tumor progression of various cancers. The relation between the expression of TRPC6 and clinical prognosis has not been studied yet. Our study was to elucidate the role of TRPC6 in predicting outcomes of patients with esophageal squamous cell carcinoma (ESCC). Fresh frozen samples were collected immediately from 172 patients(More)
Cellular zinc influx and efflux are maintained by two major transporter families, the ZIP (SLC39A) and ZnT (SLC30A or CDF) molecules. The functions of one molecule in this class, ZIP11/SLC39A11, remain unclear. Bioinformatics analysis of the distribution and evolutionary relationships of different ZIP members in eukaryotes and prokaryotes indicated that(More)