Learn More
Cytoplasmic dynein transports membranous cargoes along microtubules, but the mechanism of dynein-cargo interaction is unclear. From a genetic screen, we identified a homologue of human Hook proteins, HookA, as a factor required for dynein-mediated early endosome movement in the filamentous fungus Aspergillus nidulans. HookA contains a putative N-terminal(More)
The most striking feature of a G protein-coupled receptor (GPCR) is its highly exclusive agonist specificity. This feature guarantees that a GPCR recognizes only its specific native agonist(s). In this study, we showed that two point mutations of N295S and L305Q enabled the AT(1) receptors to recognize multiple Ang II fragments. Similar to the well(More)
The P2 operon of the staphylococcal accessory gene regulator (agr) encodes four genes (agrA, -B, -C, and -D) whose products compose a quorum sensing system: AgrA and AgrC resemble a two-component signal transduction system of which AgrC is a sensor kinase and AgrA is a response regulator; AgrD, a polypeptide that is integrated into the cytoplasmic membrane(More)
The agr system is a global regulator of accessory functions in staphylococci, including genes encoding exoproteins involved in virulence. The agr locus contains a two-component signal transduction module that is activated by an autoinducing peptide (AIP) encoded within the agr locus and is conserved throughout the genus. The AIP has an unusual partially(More)
The minus end-directed microtubule motor cytoplasmic dynein is responsible for the intracellular movements of many organelles, including nuclei and endosomes. The dynein heavy chain contains a C-terminal motor domain and an N-terminal tail domain. The tail binds other dynein subunits and the cargo-interacting dynactin complex but is dispensable for movement(More)
Microtubule-based distribution of organelles/vesicles is crucial for the function of many types of eukaryotic cells and the molecular motor cytoplasmic dynein is required for transporting a variety of cellular cargos toward the microtubule minus ends. Early endosomes represent a major cargo of dynein in filamentous fungi, and dynein regulators such as LIS1(More)
Centrosome amplification is a hallmark of many types of cancer cells, and clustering of multiple centrosomes is critical for cancer cell survival and proliferation. Human kinesin-14 HSET/KFIC1 is essential for centrosome clustering, and its inhibition leads to the specific killing of cancer cells with extra centrosomes. Since kinesin-14 motor domains are(More)
  • 1