Learn More
Microbial polyhydroxyalkanoates (PHA) were proposed for the first time as a new type of biofuel. In this paper, poly-R-3-hydroxybutyrate (PHB) and medium chain length PHA (mcl PHA) were, respectively, esterified to become R-3-hydroxybutyrate methyl ester (3HBME) and medium chain length hydroxyalkanoate methyl ester (3HAME) via acid-catalyzed hydrolysis. The(More)
Recreation of neural network in vitro with designed topology is a valuable tool to decipher how neurons behave when interacting in hierarchical networks. In this study, we developed a simple and effective platform to pattern primary neurons in array formats for interrogation of neural circuitry with single cell resolution. Unlike many(More)
Nanoparticles made from poly(dl-lactide-co-glycolide) (PLGA) are used to deliver a wide range of bioactive molecules, due to their biocompatibility and biodegradability. This study investigates the surface modification of PLGA nanoparticles via the layer-by-layer (LbL) deposition of polyelectrolytes, and the effects of these coatings on the release(More)
The capability to remotely control the release of biomolecules provides an unique opportunity to monitor and regulate neural signaling, which spans extraordinary spatial and temporal scales. While various strategies, including local perfusion, molecular "uncaging", or photosensitive polymeric materials, have been applied to achieve controlled releasing of(More)
Poly(N-isopropylacrylamide) (pNIPAM) composite microgels incorporating polypyrrole (PPy) nanoparticles were produced using droplet microfluidics. The composite microgels exhibited site-specific de-swelling-swelling properties that were activated by near-infrared light. Their applications for programmable drug release by pulsed-light control were also(More)
Microvalves with different actuation methods offer great integrability and flexibility in operation of lab-on-chip devices. In this work, we demonstrate a hydrogel-based and optically controlled modular microvalve that can be easily integrated within a microfluidic device and actuated by an off-chip laser source. The microvalve is based on in-channel(More)
Light-responsive hydrogel particles with multi-compartmental structure are useful for applications in microreactors, drug delivery and tissue engineering because of their remotely-triggerable releasing ability and combinational functionalities. The current methods of synthesizing multi-compartmental hydrogel particles typically involve multi-step(More)
To prepare a hydrogel with robust mechanical properties and programmable remotely-controlled releasing ability, we synthesized an agarose/alginate double network hydrogel incorporating polypyrrole (PPy) nanoparticles as a near-infrared (NIR) laser responsive releasing system. This hydrogel exhibited pulsatile releasing behaviours according to the laser(More)
This work reports the fabrication of layer-by-layer (LbL) polyelectrolyte coated erythrocyte carriers that provide a simple means for controlling the burst and subsequent release of lysozyme. Erythrocytes were loaded with RITC-lysozyme as model compound via the hypotonic dialysis method. An encapsulation efficiency of 41.6% and a loading amount of 12.7(More)
The poor solubility of many newly discovered drugs has resulted in numerous challenges for the time-controlled release of therapeutics. In this study, an advanced drug delivery platform to encapsulate and deliver hydrophobic drugs, consisting of poly (lactic-co-glycolic acid) (PLGA) nanoparticles incorporated within poly (ethylene glycol) (PEG) microgels,(More)