Learn More
Multiplexed detection of oligonucleotide targets has been performed with gold nanoparticle probes labeled with oligonucleotides and Raman-active dyes. The gold nanoparticles facilitate the formation of a silver coating that acts as a surface-enhanced Raman scattering promoter for the dye-labeled particles that have been captured by target molecules and an(More)
Nanoparticles are finding many research and industrial applications, yet their characterization remains a challenge. Their cores are often polydisperse and coated by a stabilizing shell that varies in size and composition. No single technique can characterize both the size distribution and the nature of the shell. Advances in analytical ultracentrifugation(More)
Inorganic nanoparticles exhibit size-dependent properties that are of interest for applications ranging from biosensing and catalysis to optics and data storage. They are readily available in a wide variety of discrete compositions and sizes. Shape-selective synthesis strategies now also yield shapes other than nanospheres, such as anisotropic metal(More)
A golden opportunity: the total structure of a Au(36)(SR)(24) nanocluster reveals an unexpected face-centered-cubic tetrahedral Au(28) kernel (magenta). The protecting layer exhibits an intriguing combination of binding modes, consisting of four regular arch-like staples and the unprecedented appearance of twelve bridging thiolates (yellow). This unique(More)
We report a high yielding synthesis of truly monodisperse, thiolate-protected silver clusters via a rationally designed approach. The cluster composition was determined by electrospray ionization (ESI) mass spectrometry to be Ag(7)(DMSA)(4), where DMSA represents meso-2,3-dimercaptosuccinic acid. The Ag(7) thiolate clusters exhibit distinct optical(More)
Structural ordering is widely present in molecules and materials. However, the organization of molecules on the curved surface of nanoparticles is still the least understood owing to the major limitations of the current surface characterization tools. By the merits of x-ray crystallography, we reveal the structural ordering at all scales in a super robust(More)
Magic-sized clusters, as the intermediate state between molecules and nanoparticles, exhibit critical transitions of structures and material properties. We report two unique structures of gold clusters solved by x-ray crystallography, including Au40 and Au52 protected by thiolates. The Au40 and Au52 clusters exhibit a high level of complexity, with the gold(More)
The use of gold nanoparticles coated with an organic monolayer of thiol for application in chemiresistive sensors was initiated in the late 1990s; since then, such types of sensors have been widely pursued due to their high sensitivities and reversible responses to volatile organic compounds (VOCs). However, a major issue for chemical sensors based on(More)
The evolution from the metallic (or plasmonic) to molecular state in metal nanoparticles constitutes a central question in nanoscience research because of its importance in revealing the origin of metallic bonding and offering fundamental insights into the birth of surface plasmon resonance. Previous research has not been able to probe the transition due to(More)