Rongchao Jin

Learn More
Multiplexed detection of oligonucleotide targets has been performed with gold nanoparticle probes labeled with oligonucleotides and Raman-active dyes. The gold nanoparticles facilitate the formation of a silver coating that acts as a surface-enhanced Raman scattering promoter for the dye-labeled particles that have been captured by target molecules and an(More)
We report a series of experiments and a theoretical model designed to systematically define and evaluate the relative importance of nanoparticle, oligonucleotide, and environmental variables that contribute to the observed sharp melting transitions associated with DNA-linked nanoparticle structures. These variables include the size of the nanoparticles, the(More)
Noble metal nanoparticles (e.g., Au, Ag) have become one of the most important types of nanomaterials that are being extensively explored in nanoscience and nanotechnology research. Between metal atoms and bulk metals, there are two distinct size regimes of particular interest, that is, the cluster state and the nanocrystal state.1,2 Metal nanoclusters (Mn,(More)
The plasmonic properties of single silver triangular nanoprisms are investigated using dark-field optical microscopy and spectroscopy. Two distinct localized surface plasmon resonances (LSPR) are observed. These are assigned as in-plane dipolar and quadrupolar plasmon excitations using electrodynamic modeling based on the discrete dipole approximation(More)
Nanoparticles are finding many research and industrial applications, yet their characterization remains a challenge. Their cores are often polydisperse and coated by a stabilizing shell that varies in size and composition. No single technique can characterize both the size distribution and the nature of the shell. Advances in analytical ultracentrifugation(More)
We report a facile, two-step synthetic method for preparing truly monodiserse Au(144)(SCH(2)CH(2)Ph)(60) nanoparticles with their formula determined by electrospray mass spectrometry in conjunction with other characterization. A remarkable advantage of our synthetic approach lies in that it solely produces Au(144)(SCH(2)CH(2)Ph)(60) nanoparticles, hence,(More)
Despite the recent crystallographic determination of the crystal structure of Au(25)(SCH(2)CH(2)Ph)(18) clusters, the question--whether all thiolate-capped, 25-atom gold clusters adopt the same structure, regardless of the types of thiols (e.g., long-chain alkylthiols, aromatic thiols, or other functionalized ones)--still remains unanswered. To crystallize(More)
We report a kinetically controlled approach to synthesizing thiolate-capped 20-atom gold clusters. ESI mass spectrometry analysis in combination with other methods, including elemental analysis, XPS, NMR, and thermogravimetric analysis, determines the cluster composition to be Au(20)(SCH(2)CH(2)Ph)(16). The Au(20)(SCH(2)CH(2)Ph)(16) clusters exhibit a(More)
We report the X-ray structure of a cyclohexanethiolate-capped [Au23(SR)16](-) nanocluster (counterion: tetraoctylammonium, TOA(+)). The structure comprises a cuboctahedron-based bipyramidal Au15 kernel, which is protected by two staple-like trimeric Au3(SR)4 motifs, two monomeric Au(SR)2 and four plain bridging SR ligands. Electronic structure analysis(More)