Rong-jian Su

Learn More
BTG (B-cell translocation gene) can inhibit cell proliferation, metastasis and angiogenesis, cell cycle progression, and induce differentiation in various cells. Here, we found that BTG3 overexpression inhibited proliferation, induced S/G2 arrest, differentiation, autophagy, apoptosis, suppressed migration and invasion in MKN28 and MGC803 cells (p < 0.05).(More)
Here, we found that BTG1 overexpression inhibited proliferation, migration and invasion, induced G2/M arrest, differentiation, senescence and apoptosis in BGC-823 and MKN28 cells (p < 0.05). BTG1 transfectants showed a higher mRNA expression of Cyclin D1 and Bax, but a lower mRNA expression of cdc2, p21, mTOR and MMP-9 than the control and mock (p < 0.05).(More)
ING5 can interact with p53, thereby inhibiting cell growth and inducing apoptosis. We found that ING5 overexpression not only inhibited proliferation, migration, and invasion, but also induced G2 arrest, differentiation, autophagy, apoptosis, glycolysis and mitochondrial respiration in lung cancer cells. ING5 transfection up-regulated the expression of(More)
Here, we found that ING5 overexpression increased autophagy, differentiation, and decreased proliferation, apoptosis, migration, invasion and lamellipodia formation in gastric cancer cells, while ING5 knockdown had the opposite effects. In SGC-7901 transfectants, ING5 overexpression caused G1 arrest, which was positively associated with 14-3-3(More)
Currently, clinical operation treatments, chemotherapy and radiotherapy just could eliminate local tumor cells. However, chemotherapy and radiotherapy also injury normal cells and lead to serious side effects and toxicities. So, it is necessary to find an effective target cancer carrier that delivers the anticancer agents into tumor cells and reduces normal(More)
BACKGROUND We have reported previously that overexpression of glucose-regulated protein 78 (GRP78) promotes the invasion of hepatocellular carcinoma. However, whether GRP78 knockdown affects the extracellular matrix degradation has not been elucidated. Here we are going to determine whether GRP78 knockdown affect the ECM degradation and the role of MMP-2(More)
Invasion is a major characteristic of hepatocellular carcinoma and one of the main causes of refractory to treatment. We have previously reported that GRP78 promotes the invasion of hepatocellular carcinoma although the mechanism underlying this change remains uncertain. In this paper, we explored the role of the cell surface GRP78 in the regulation of(More)
Heat-labile enterotoxin subunit B (LTB) is a non-catalytic protein from a pentameric subunit of Escherichia coli. Based on its function of binding specifically to ganglioside GM1 on the surface of cells, a novel nanoparticle (NP) composed of a mixture of bovine serum albumin (BSA) and LTB was designed for targeted delivery of 5-fluorouracil to tumor cells.(More)
Nanoparticles (NPs) which target specific agents could effectively recognize the target cells and increase the stability of chemical agents by encapsulation. As such, NPs have been widely used in cancer treatment research. Recently, over 90% of treatment failure cases in patients with metastatic cancer were attributed to resistance to chemotherapy.(More)
5-FU is a common first-line chemotherapeutic drug for the treatment of hepatocellular carcinoma. However the development of acquired resistance to 5-FU confines its clinical usages. Although this phenomenon has been the subject of intense investigation, the exact mechanism of acquired resistance to 5-FU remains elusive. Here, we report that over-expression(More)