Learn More
This study determined hydrogen production, volatile fatty acids (VFAs) generation and cellulose solubilisation from anaerobic dark fermentation of wheat stalk and showed the effect of different mixed microflora. The cumulative hydrogen yields of anaerobic digested activated sludge (AS)-inoculated and anaerobic digested dairy manure (DM)-inoculated system(More)
The sustained production of H2 by Chlorella pyrenoidosa was achieved without sulfur deficiency or PSII inhibition. C. pyrenoidosa preserved hydrogenase activity for several hours in the dark. Hydrogenase activity in vitro is O2 sensitive, which indicates that respiration may play an important role in H2 production. A sustainable production of H2 was(More)
Potential for interspecies hydrogen transfer within paddy soil enrichments obtained via addition of magnetite nanoparticles and ethanol (named as PEM) was investigated. To do this, PEM derived from rice field of Hangzhou (named as PEM-HZ) was employed, because it offered the best methane production performance. Methane production and Fe (III) reduction(More)
A mesophilic, obligately anaerobic, propionate-producing fermentative bacterium, designated strain NM7T, was isolated from rural rice paddy field. Cells of strain NM7T are Gram-negative, non-motile, non-spore-forming, short rods, and negative for catalase. The strain grew optimally at 37 °C (the range for growth 15–40 °C) and pH 7.0 (pH 5.0–7.5). The strain(More)
Potential for paddy soil enrichments obtained in the presence of nano-sized magnetite particles (named as PSEM) to promote methane production from effluents of hydrogen-producing stage in two-stage anaerobic digestion was investigated. The results showed that the addition of magnetite significantly accelerated methane production from acetate in a(More)
A mesophilic, obligately anaerobic, carbohydrate-fermenting bacterium, designated 8KG-4(T), was isolated from an upflow anaerobic sludge blanket reactor treating high-strength organic wastewater from salted vegetable production processes. Cells of strain 8KG-4(T) were non-motile, spherical and 0.7-1.5 µm in diameter (mean, 1.0 µm). Spore formation was not(More)
A 16S rRNA gene-based method was used to characterize the structure of bacterial and archaeal communities in a full-scale, anaerobic reactor treating corn straw. Degradability experiment indicated biogas slurry had high microbial activity, the TS removal rate was 53% and the specific methanogenic activity was 86 mL CH4 g VSS(-1) d(-1). During anaerobic(More)
A system containing a sequential anode–cathode configuration microbial fuel cell and a photobioreactor was developed for continuous treatment of wastewater and electricity generation. Wastewater was treated by the fuel cell to decrease the chemical oxygen demand (COD), phosphorus and nitrogen and to produce electricity. The effluent from the cathode(More)
The effect of bioaugmentation with an acetate-type fermentation bacterium in the phylum Bacteroidetes on the anaerobic digestion of corn straw was evaluated by batch experiments. Acetobacteroides hydrogenigenes is a promising strain for bioaugmentation with relatively high growth rate, hydrogen yields and acetate tolerance, which ferments a broad spectrum(More)
Using batch and repeated batch cultivations, this study investigated the effects of bioaugmentation with enriched microbial consortia (named as EMC) on methane production from effluents of hydrogen-producing stage of potato slurry, as well as on the indigenous bacterial community. The results demonstrated that the improved methane production and shift of(More)