Learn More
A major goal of proteomics is the complete description of the protein interaction network underlying cell physiology. A large number of small scale and, more recently, large-scale experiments have contributed to expanding our understanding of the nature of the interaction network. However, the necessary data integration across experiments is currently(More)
Lysine acetylation regulates many eukaryotic cellular processes, but its function in prokaryotes is largely unknown. We demonstrated that central metabolism enzymes in Salmonella were acetylated extensively and differentially in response to different carbon sources, concomitantly with changes in cell growth and metabolic flux. The relative activities of key(More)
BACKGROUND Microarrays revolutionized biological research by enabling gene expression comparisons on a transcriptome-wide scale. Microarrays, however, do not estimate absolute expression level accurately. At present, high throughput sequencing is emerging as an alternative methodology for transcriptome studies. Although free of many limitations imposed by(More)
Among other factors, changes in gene expression on the human evolutionary lineage have been suggested to play an important role in the establishment of human-specific phenotypes. However, the molecular mechanisms underlying these expression changes are largely unknown. Here, we have explored the role of microRNA (miRNA) in the regulation of gene expression(More)
HUPO initiated the Plasma Proteome Project (PPP) in 2002. Its pilot phase has (1) evaluated advantages and limitations of many depletion, fractionation, and MS technology platforms; (2) compared PPP reference specimens of human serum and EDTA, heparin, and citrate-anti-coagulated plasma; and (3) created a publicly-available knowledge base(More)
Hyperpolarization-activated cyclic nucleotide-gated channels (HCN1-4) play a crucial role in the regulation of cell excitability. Importantly, they contribute to spontaneous rhythmic activity in brain and heart. HCN channels are principally activated by membrane hyperpolarization and binding of cAMP. Here, we identify tyrosine phosphorylation by Src kinase(More)
Human evolution is characterized by the rapid expansion of brain size and drastic increase in cognitive capabilities. It has long been suggested that these changes were accompanied by modifications of brain metabolism. Indeed, human-specific changes on gene expression or amino acid sequence were reported for a number of metabolic genes, but actual(More)
The conserved polarity complex, comprising the partitioning-defective (Par) proteins Par3 and Par6, and the atypical protein kinase C, functions in various cell-polarization events and asymmetric cell divisions. However, little is known about whether and how external stimuli-induced signals may regulate Par3 function in epithelial cell polarity. Here, we(More)
The low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6) are coreceptors for Frizzled and transmit signals from the plasma membrane to the cytosol. However, the mechanism for LRP5/6 signal transmission remains undefined. Here, we identify cytoplasmic activation/proliferation-associated protein 2 (Caprin-2) as a LRP5/6-binding protein. Our data(More)
A recessive, adult-onset neuronal ceroid-lipofuscinosis (NCL) occurs in Tibetan terriers. A genome-wide association study restricted this NCL locus to a 1.3Mb region of canine chromosome 2 which contains canine ATP13A2. NCL-affected dogs were homozygous for a single-base deletion in ATP13A2, predicted to produce a frameshift and premature termination codon.(More)