Learn More
Recognition of evolutionary units (species, populations) requires integrating several kinds of data, such as genetic or phenotypic markers or spatial information in order to get a comprehensive view concerning the differentiation of the units. We propose a statistical model with a double original advantage: (i) it incorporates information about the spatial(More)
Phenotype variation is a key feature in evolution, being produced by development and the target of the screening by selection. We focus here on a variable morphological feature: the third upper molar (UM3) of the bank vole, aiming at identifying the sources of this variation. Size and shape of the UM3 occlusal surface was quantified in successive samples of(More)
Geometric morphometrics aims to characterize of the geometry of complex traits. It is therefore by essence multivariate. The most popular methods to investigate patterns of differentiation in this context are (1) the Principal Component Analysis (PCA), which is an eigenvalue decomposition of the total variance-covariance matrix among all specimens; (2) the(More)
Phenotypic differentiation is often interpreted as a result of local adaptation of individuals to their environment. Here, we investigated the skull morphological differentiation in 11 populations of the white-footed mouse (Peromyscus leucopus). These populations were sampled in an agricultural landscape in the Montérégie region (Québec, Canada), at the(More)
Phylogeographic lineages are interpreted as the product of repeated isolation in glacial refugia, leading to vicariant differentiation. Being restricted to a given geographic area could also promote adaptive divergence in response to local conditions. The role of phylogeny and climate in the evolution of the bank vole (Myodes glareolus) was investigated(More)
  • 1