Ronan Calvez

Learn More
Phosphoinositide 3-kinases (PI3Ks) are important regulators of cell migration. The PI3K isoform gamma is primarily expressed in haematopoietic cells, and is activated by G protein-coupled receptors (GPCRs). Here, we investigate the contribution of PI3Kgamma to macrophage responses to chemoattractants, using bone marrow-derived macrophages from wild-type and(More)
Mast cells are key regulators in allergy and inflammation, and release histamine upon clustering of their IgE receptors. Here we demonstrate that murine mast cell responses are exacerbated in vitro and in vivo by autocrine signals through G protein-coupled receptors (GPCRs) and require functional phosphoinositide 3-kinase gamma (PI3Kgamma). Adenosine,(More)
Pulmonary emphysema in chronic obstructive pulmonary disease (COPD) is characterized by the destruction of the alveolar walls leading to permanent enlargement of distal respiratory air spaces. A major causal factor is cigarette smoking, which produces conditions of chronic oxidative stress within the lungs. At a cellular level, increased macrophage(More)
Platelet aggregation and subsequent thrombosis are the major cause of ischemic diseases such as heart attack and stroke. ADP, acting via G protein-coupled receptors (GPCRs), is an important signal in thrombus formation and involves activation of phosphoinositide 3-kinases (PI3K). When platelets from mice lacking the G protein-activated PI3Kgamma isoform(More)
BACKGROUND The Wiskott-Aldrich syndrome (WAS) is a rare genetic disease characterized by thrombocytopenia, immunodeficiency, autoimmunity, and hematologic malignancies. Secondary mutations leading to re-expression of WAS protein (WASP) are relatively frequent in patients with WAS. OBJECTIVE The tissue distribution and function of revertant cells were(More)
WAS is a primary immunodeficiency as a result of mutations in the gene encoding the WASP, a key actin regulator of hematopoietic cells. Whether killing defects in CD8(+) CTLs contribute to WAS-associated immunodeficiency and susceptibility to tumor development remains to be explored. CTL lines from WAS patients, generated by repeated stimulation with(More)
Chronic inflammation and allergy involve the activation of tissue-resident cells and, later on, the invasion of effector cells. We have previously shown that the loss of phosphoinositide 3-kinase (PI3K) gamma impairs chemokine-dependent migration of neutrophils and macrophages both in vitro and in vivo. On the other hand, PI3K gamma is not required either(More)
BACKGROUND T-cell activation relies on the assembly of the immunological synapse, a structure tightly regulated by the actin cytoskeleton. The precise role of the Wiskott-Aldrich syndrome protein, an actin cytoskeleton regulator, in linking immunological synapse structure to downstream signaling remains to be clarified. DESIGN AND METHODS To address this(More)
Phosphoinositide 3-kinase gamma (PI3Kgamma) plays a major role in chronic inflammation and allergy. It is a heterodimer of a catalytic p110gamma subunit and an adaptor protein, either p101 or the p101 homolog p84 (p87(PIKAP)). It is unclear whether both PI3Kgamma complexes specifically modulate responses such as chemotaxis and degranulation. In mast cells,(More)