Ronald Stanton Duman

Learn More
Various chronic antidepressant treatments increase adult hippocampal neurogenesis, but the functional importance of this phenomenon remains unclear. Here, using genetic and radiological methods, we show that disrupting antidepressant-induced neurogenesis blocks behavioral responses to antidepressants. Serotonin 1A receptor null mice were insensitive to the(More)
Recent studies suggest that stress-induced atrophy and loss of hippocampal neurons may contribute to the pathophysiology of depression. The aim of this study was to investigate the effect of antidepressants on hippocampal neurogenesis in the adult rat, using the thymidine analog bromodeoxyuridine (BrdU) as a marker for dividing cells. Our studies(More)
The influence of chronic electroconvulsive seizure (ECS) or antidepressant drug treatments on expression of brain-derived neurotrophic factor (BDNF) and its receptor, trkB, was examined by in situ hybridization and Northern blot. In frontal cortex, acute ECS increased BDNF mRNA approximately twofold, an effect significantly augmented by a prior course of(More)
The rapid antidepressant response after ketamine administration in treatment-resistant depressed patients suggests a possible new approach for treating mood disorders compared to the weeks or months required for standard medications. However, the mechanisms underlying this action of ketamine [a glutamate N-methyl-D-aspartic acid (NMDA) receptor antagonist](More)
There is a growing body of evidence demonstrating that stress decreases the expression of brain-derived neurotrophic factor (BDNF) in limbic structures that control mood and that antidepressant treatment reverses or blocks the effects of stress. Decreased levels of BDNF, as well as other neurotrophic factors, could contribute to the atrophy of certain(More)
Recent studies have begun to characterize the actions of stress and antidepressant treatments beyond the neurotransmitter and receptor level. This work has demonstrated that long-term antidepressant treatments result in the sustained activation of the cyclic adenosine 3',5'-monophosphate system in specific brain regions, including the increased function and(More)
Increasing evidence demonstrates that neuroplasticity, a fundamental mechanism of neuronal adaptation, is disrupted in mood disorders and in animal models of stress. Here we provide an overview of the evidence that chronic stress, which can precipitate or exacerbate depression, disrupts neuroplasticity, while antidepressant treatment produces opposing(More)
The present study demonstrates that chronic, but not acute, adminstration of several different classes of antidepressants, including serotonin- and norepinephrine-selective reuptake inhibitors, increases the expression of cAMP response element binding protein (CREB) mRNA in rat hippocampus. In contrast, chronic administration of several nonantidepressant(More)
BACKGROUND Converging lines of evidence implicate the neurotrophin brain-derived neurotrophic factor (BDNF) in the pathophysiology of major depression. Recent studies have begun to explore the relationship between serum BDNF and depression. METHODS We conducted meta-analyses of 11 studies examining differences in serum BDNF content between depressed and(More)