Ronald P. Kühnlein

Learn More
Energy homeostasis is a fundamental property of animal life, providing a genetically fixed balance between fat storage and mobilization. The importance of body fat regulation is emphasized by dysfunctions resulting in obesity and lipodystrophy in humans. Packaging of storage fat in intracellular lipid droplets, and the various molecules and mechanisms(More)
Energy homeostasis, a fundamental property of all organisms, depends on the ability to control the storage and mobilization of fat, mainly triacylglycerols (TAG), in special organs such as mammalian adipose tissue or the fat body of flies. Malregulation of energy homeostasis underlies the pathogenesis of obesity in mammals including human. We performed a(More)
The region specific homeotic gene spalt (sal) of Drosophila melanogaster promotes the specification of terminal pattern elements as opposed to segments in the trunk. Our results show that the previously reported sal transcription unit was misidentified. Based on P-element mediated germ line transformation and DNA sequence analysis of sal mutant alleles, we(More)
In Drosophila, the masses and sheets of adipose tissue that are distributed throughout the fly are collectively called the fat body. Like mammalian adipocytes, insect fat body cells provide the major energy reserve of the animal organism. Both cell types accumulate triacylglycerols (TAG) in intracellular lipid droplets; this finding suggests that the(More)
We report that the region-specific homeotic gene spalt affects the Drosophila tracheal system at two different stages of embryonic development. Both lack-of-function and gain-of-function experiments show that blastodermal spalt activity restricts tracheal development to 10 bilaterally positioned pairs of tracheal placodes in the trunk region by repressing(More)
Cell migration during embryonic tracheal system development in Drosophila requires DPP and EGF signaling to generate the archetypal branching pattern. We show that two genes encoding the transcription factors KNIRPS and KNIRPS RELATED possess multiple and redundant functions during tracheal development. knirps/knirps related activity is necessary to mediate(More)
The induction of sensory organ placodes, in particular the lens placode, represents the paradigm for induction. We show that medaka Sox3 is expressed in the neuroectoderm and in the placodes of all sensory organs prior to placode formation and subsequently in placode-derived tissues. Ectopic Sox3 expression leads to ectopic expression of Pax6 and Eya1 in(More)
Lipid storage droplets are universal organelles essential for the cellular and organismal lipometabolism including energy homeostasis. Despite their apparently simple design they are proposed to participate in a growing number of cellular processes, raising the question to what extent the functional multifariousness is reflected by a complex organellar(More)
Lipid droplets are intracellular organelles enriched in adipose tissue that govern the body fat stores of animals. In mammals, members of the evolutionarily conserved PERILIPIN protein family are associated with the lipid droplet surface and participate in lipid homeostasis. Here, we show that Drosophila mutants lacking the PERILIPIN PLIN1 are hyperphagic(More)
The region-specific homeotic gene spalt (sal) of Drosophila specifies head and tail as opposed to trunk segments. During later stages of ontogenesis, sal is also expressed and required in a small number of tissues and organs in the developing embryo. sal encodes a zinc finger protein of unusual but characteristic structure. We made use of these unique(More)