Learn More
Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Each copy of any part of a JSTOR transmission must contain the same copyright notice that(More)
The following abstract problem models several practical problems in computer science and operations research: given a list L of real numbers between 0 and 1, place the elements of L into a minimum number L* of "bins" so that no bin contains numbers whose sum exceeds 1. Motivated by the likelihood that an excessive amount of computation will be required by(More)
A classical topic in combinatorics is the study of problems of the following type: What are the maximum families F of subsets of a finite set with the property that the intersection of any two sets in the family satisfies some specified condition? Typical restrictions on the intersections F n F of any F and F' in F are: (i) FnF'# 0, where all FEF have k(More)
The covering radius R of a code is the maximal distance of any vector from the code. This work gives a number of new results concerning t[ n, k], the minimal covering radius of any binary code of length n and dimension k. For example r[ n, 41 and t [ n, 51 are determined exactly, and reasonably tight bounds on t[ n, k] are obtained for any k when n is(More)
Despite the recognized potential of multiprocessing little is known concerning the general problem of finding efficient algorithms which compute minimallength schedules for given computations and m≧2 processors. In this paper we formulate a general model of computation structures and exhibit an efficient algorithm for finding optimal nonpreemptive schedules(More)