Ronald L. Davis

Learn More
We have developed a method for temporal and regional gene expression targeting (TARGET) in Drosophila and show the simultaneous spatial and temporal rescue of a memory defect. The transient expression of the rutabaga-encoded adenylyl cyclase in the mushroom bodies of the adult brain was necessary and sufficient to rescue the rutabaga memory deficit, which(More)
The olfactory nervous system of insects and mammals exhibits many similarities, which suggests that the mechanisms for olfactory learning may be shared. Molecular genetic investigations of Drosophila learning have uncovered numerous genes whose gene products are essential for olfactory memory formation. Recent studies of the products of these genes have(More)
Targeted gene expression has become a standard technique for the study of biological questions in Drosophila. Until recently, transgene expression could be targeted in the dimension of either time or space, but not both. Several new systems have recently been developed to direct transgene expression simultaneously in both time and space. We describe here(More)
In the olfactory bulb of vertebrates or the homologous antennal lobe of insects, odor quality is represented by stereotyped patterns of neuronal activity that are reproducible within and between individuals. Using optical imaging to monitor synaptic activity in the Drosophila antennal lobe, we show here that classical conditioning rapidly alters the neural(More)
Involvement of the cAMP cascade in Drosophila learning and memory is suggested by the aberrant behavioral phenotypes of the mutants dunce (cAMP phosphodiesterase) and rutabaga (adenylyl cyclase). Line DCO581, isolated via an enhancer detector screen for genes preferentially expressed in the mushroom bodies, contains a transposon in the first exon of the(More)
Octopamine is a neuromodulator that mediates diverse physiological processes in invertebrates. In some insects, such as honeybees and fruit flies, octopamine has been shown to be a major stimulator of adenylyl cyclase and to function in associative learning. To identify an octopamine receptor mediating this function in Drosophila, putative biogenic amine(More)
The multisubunit MSL dosage compensation complex binds to hundreds of sites along the Drosophila single male X chromosome, mediating its hypertranscription. The male X chromosome is also coated with noncoding roX RNAs. When either msl3, mle, or mof is mutant, a partial MSL complex is bound at only approximately 35 unusual sites distributed along the X. We(More)
Cyclic AMP is an intracellular mediator ('second messenger') in the nervous and endocrine control of cellular function, regulating different processes in different cell types. Although evidence is incomplete, it seems that cyclic AMP enhances the calcium-mediated release of neurotransmitter in some neurones. A simple form of memory in the mollusc Aplysia is(More)
The modulatory neurotransmitters that trigger biochemical cascades underlying olfactory learning in Drosophila mushroom bodies have remained unknown. To identify molecules that may perform this role, putative biogenic amine receptors were cloned using the polymerase chain reaction (PCR) and single-strand conformation polymorphism analysis. One new receptor,(More)
Four putative adenylyl cyclase genes from Drosophila melanogaster were identified by virtue of their extensive sequence homology with mammalian cyclases. One corresponds to the learning and memory gene rutabaga and is most similar to the mammalian brain Ca2+/calmodulin (CaM)-responsive cyclase. In a mammalian expression system, rutabaga cyclase activity was(More)