Ronald Kemker

  • Citations Per Year
Learn More
In this paper, we study self-taught learning for hyperspectral image (HSI) classification. Supervised deep learning methods are currently state of the art for many machine learning problems, but these methods require large quantities of labeled data to be effective. Unfortunately, existing labeled HSI benchmarks are too small to directly train a deep(More)
Deep neural networks are used in many state-of-the-art systems for machine perception. Once a network is trained to do a specific task, e.g., bird classification, it cannot easily be trained to do new tasks, e.g., incrementally learning to recognize additional bird species or learning an entirely different task such as flower recognition. When new tasks are(More)
Unmanned aircraft have decreased the cost required to collect remote sensing imagery, which has enabled researchers to collect high-spatial resolution data from multiple sensor modalities more frequently and easily. The increase in data will push the need for semantic segmentation frameworks that are able to classify non-RGB imagery, but this type of(More)
A semantic segmentation algorithm must assign a label to every pixel in an image. Recently, semantic segmentation of RGB imagery has advanced significantly due to deep learning. Because creating datasets for semantic segmentation is laborious, these datasets tend to be significantly smaller than object recognition datasets. This makes it difficult to(More)
  • 1