Learn More
We have developed an approach using Bayesian networks to predict protein-protein interactions genome-wide in yeast. Our method naturally weights and combines into reliable predictions genomic features only weakly associated with interaction (e.g., messenger RNAcoexpression, coessentiality, and colocalization). In addition to de novo predictions, it can(More)
We investigate the relationship of protein-protein interactions with mRNA expression levels, by integrating a variety of data sources for yeast. We focus on known protein complexes that have clearly defined interactions between their subunits. We find that subunits of the same protein complex show significant coexpression, both in terms of similarities of(More)
The concept of 'protein function' is rather 'fuzzy' because it is often based on whimsical terms or contradictory nomenclature. This currently presents a challenge for functional genomics because precise definitions are essential for most computational approaches. Addressing this challenge, the notion of networks between biological entities (including(More)
Recent advances in microarray technology have opened new ways for functional annotation of previously uncharacterised genes on a genomic scale. This has been demonstrated by unsupervised clustering of co-expressed genes and, more importantly, by supervised learning algorithms. Using prior knowledge, these algorithms can assign functional annotations based(More)
Currently, there is a major effort to map protein-protein interactions on a genome-wide scale. The utility of the resulting interaction networks will depend on the reliability of the experimental methods and the coverage of the approaches. Known macromolecular complexes provide a defined and objective set of protein interactions with which to compare(More)
BACKGROUND Identifying protein-protein interactions is fundamental for understanding the molecular machinery of the cell. Proteome-wide studies of protein-protein interactions are of significant value, but the high-throughput experimental technologies suffer from high rates of both false positive and false negative predictions. In addition to(More)
Protein localization data are a valuable information resource helpful in elucidating eukaryotic protein function. Here, we report the first proteome-scale analysis of protein localization within any eukaryote. Using directed topoisomerase I-mediated cloning strategies and genome-wide transposon mutagenesis, we have epitope-tagged 60% of the Saccharomyces(More)
MOTIVATION Many classifications of protein function such as Gene Ontology (GO) are organized in directed acyclic graph (DAG) structures. In these classifications, the proteins are terminal leaf nodes; the categories 'above' them are functional annotations at various levels of specialization and the computation of a numerical measure of relatedness between(More)
The TGF-beta pathway plays a central role in tissue homeostasis and morphogenesis. It transduces a variety of extracellular signals into intracellular transcriptional responses that control a plethora of cellular processes, including cell growth, apoptosis, and differentiation. We use computational modeling to show that coupling of signaling with receptor(More)
The ultimate goal of functional genomics is to define the function of all the genes in the genome of an organism. A large body of information of the biological roles of genes has been accumulated and aggregated in the past decades of research, both from traditional experiments detailing the role of individual genes and proteins, and from newer experimental(More)