Ronald J. deLeeuw

Learn More
MOTIVATION Array comparative genomic hybridization (aCGH) is a pervasive technique used to identify chromosomal aberrations in human diseases, including cancer. Aberrations are defined as regions of increased or decreased DNA copy number, relative to a normal sample. Accurately identifying the locations of these aberrations has many important medical(More)
BACKGROUND Array comparative genomic hybridization (CGH) is a technique which detects copy number differences in DNA segments. Complete sequencing of the human genome and the development of an array representing a tiling set of tens of thousands of DNA segments spanning the entire human genome has made high resolution copy number analysis throughout the(More)
BACKGROUND Recent advances in global genomic profiling methodologies have enabled multi-dimensional characterization of biological systems. Complete analysis of these genomic profiles require an in depth look at parallel profiles of segmental DNA copy number status, DNA methylation state, single nucleotide polymorphisms, as well as gene expression profiles.(More)
BACKGROUND The recent development of array based comparative genomic hybridization (CGH) technology provides improved resolution for detection of genomic DNA copy number alterations. In array CGH, generating spotting solution is a multi-step process where bacterial artificial chromosome (BAC) clones are converted to replenishable PCR amplified fragments(More)
Pheochromocytomas (PCC) are catecholamine-producing tumors arising from the adrenal medulla that occur either sporadically or in the context of hereditary cancer syndromes, such as multiple endocrine neoplasia type 2 (MEN2), von Hippel-Lindau disease (VHL), neurofibromatosis type 1, and the PCC-paraganglioma syndrome. Conventional comparative genomic(More)
  • 1