Ronald J O'Connor

Learn More
Genomic disorders contribute significantly to genetic disease and, as detection methods improve, greater numbers are being defined. Paralogous low copy repeats (LCRs) mediate many of the chromosomal rearrangements that underlie these disorders, predisposing chromosomes to recombination errors. Deletions of proximal 22q11.2 comprise the most frequently(More)
Binding of the mammalian transcription factor E2F to the adenovirus E2a early promoter is modulated through interaction with the viral E4-6/7 protein. E4-6/7 induces the cooperative and stable binding of E2F in vitro to two correctly spaced and inverted E2F binding sites in the E2a promoter (E2F induction) by physical interaction in the protein-DNA complex.(More)
The binding of E2F to the adenovirus (Ad) E2a promoter is stimulated by the Ad E4-6/7 protein. E2F DNA binding activity is composed of a heterodimer of related but distinct proteins of the E2F-1 and DP-1 families. The E4-6/7 protein induces the cooperative and stable binding of E2F to an inverted repeat binding site in the E2a promoter apparently by(More)
The adenovirus type 5 (Ad5) E4-6/7 protein interacts directly with different members of the E2F family and mediates the cooperative and stable binding of E2F to a unique pair of binding sites in the Ad5 E2a promoter region. This induction of E2F DNA binding activity strongly correlates with increased E2a transcription when analyzed using virus infection and(More)
E2F is a cellular transcription factor that binds to the adenovirus (Ad) E1A enhancer and E2aE promoter regions, to the cellular c-myc P2 and dihydrofolate reductase promoters, and to other viral and cellular regulatory regions. The binding activity of E2F to the Ad E2aE promoter is dramatically increased during an adenovirus infection (termed E2F(More)