Ronald J. Doll

Learn More
We have been developing a series of nonpeptidic, small molecule farnesyl protein transferase inhibitors that share a common tricyclic nucleus and compete with peptide/protein substrates for binding to farnesyl protein transferase. Here, we report on pharmacological and in vivo studies with SCH 66336, a lead compound in this structural class. SCH 66336(More)
Cyclin-dependent kinases (CDK) are key positive regulators of cell cycle progression and attractive targets in oncology. SCH 727965 inhibits CDK2, CDK5, CDK1, and CDK9 activity in vitro with IC(50) values of 1, 1, 3, and 4 nmol/L, respectively. SCH 727965 was selected as a clinical candidate using a functional screen in vivo that integrated both efficacy(More)
Ras protooncogenes encode 21-kDa membrane-associated guanine nucleotide-binding proteins, which play a critical role in control of cellular proliferation and differentiation. Oncogenic, activated forms of Ras proteins are associated with a broad range of human cancers. The elucidation of the post-translational modifications that occur at the carboxyl(More)
SCH 66336 is a potent farnesyl transferase inhibitor (FTI) in clinical development. It efficiently prevents the membrane association of H-ras, but not K- or N-ras. Yet, in soft agar, it reverts the anchorage-independent growth of human tumor cell lines (hTCLs) harboring H-ras, K-ras, and N-ras mutations, implying that blocking farnesylation of proteins(More)
The structure of the metalloproteinase and hemorrhagic toxin atrolysin C form d (EC 3.4.24.42), from the venom of the western diamondback rattlesnake Crotalus atrox, has been determined to atomic resolution by x-ray crystallographic methods. This study illuminates the nature of inhibitor binding with natural (< Glu-Asn-Trp, where < Glu is pyroglutamic acid)(More)
The nucleotide exchange process is one of the key activation steps regulating the ras protein. This report describes the development of potent, non-nucleotide, small organic inhibitors of the ras nucleotide exchange process. These inhibitors bind to the ras protein in a previously unidentified binding pocket, without displacing bound nucleotide. This report(More)
To ensure proper progression through a cell cycle, checkpoints have evolved to play a surveillance role in maintaining genomic integrity. In this study, we demonstrate that loss of CDK2 activity activates an intra-S-phase checkpoint. CDK2 inhibition triggers a p53-p21 response via ATM- and ATR-dependent p53 phosphorylation at serine 15. Phosphorylation of(More)
A comprehensive structure-activity relationship (SAR) study of novel tricyclic amides has been undertaken. The discovery of compounds that are potent FPT inhibitors in the nanomolar range has been achieved. These compounds are nonpeptidic and do not contain sulfhydryl groups. They selectively inhibit farnesyl protein transferase (FPT) and not geranylgeranyl(More)
Farnesyl protein transferase (FPT) inhibition is an interesting and promising approach to non-cytotoxic anticancer therapy. Research in this area has resulted in several orally active compounds that are currently in clinical evaluation. This review focuses on FPT inhibitors in clinical trials and concentrates on the benzocycloheptapyridine class, with(More)
The imidazo-[1,2-a]-pyrazine (1) is a dual inhibitor of Aurora kinases A and B with modest cell potency (IC50 = 250 nM) and low solubility (5 μM). Lead optimization guided by the binding mode led to the acyclic amino alcohol 12k (SCH 1473759), which is a picomolar inhibitor of Aurora kinases (TdF K d Aur A = 0.02 nM and Aur B = 0.03 nM) with improved cell(More)