Ronald J. A. Wanders

Learn More
In this review, we describe the current state of knowledge about the biochemistry of mammalian peroxisomes, especially human peroxisomes. The identification and characterization of yeast mutants defective either in the biogenesis of peroxisomes or in one of its metabolic functions, notably fatty acid beta-oxidation, combined with the recognition of a group(More)
We report on a newborn girl with microcephaly, abnormal brain development, optic atrophy and hypoplasia, persistent lactic acidemia, and a mildly elevated plasma concentration of very-long-chain fatty acids. We found a defect of the fission of both mitochondria and peroxisomes, as well as a heterozygous, dominant-negative mutation in the dynamin-like(More)
We investigated how NADH generated during peroxisomal beta-oxidation is reoxidized to NAD+ and how the end product of beta-oxidation, acetyl-CoA, is transported from peroxisomes to mitochondria in Saccharomyces cerevisiae. Disruption of the peroxisomal malate dehydrogenase 3 gene (MDH3) resulted in impaired beta-oxidation capacity as measured in intact(More)
A century after the identification of a coenzymatic activity for NAD(+), NAD(+) metabolism has come into the spotlight again due to the potential therapeutic relevance of a set of enzymes whose activity is tightly regulated by the balance between the oxidized and reduced forms of this metabolite. In fact, the actions of NAD(+) have been extended from being(More)
We report on three patients (two siblings and one unrelated) presenting in infancy with progressive muscle weakness and paralysis of the diaphragm. Metabolic studies revealed a profile of plasma acylcarnitines and urine organic acids suggestive of a mild form of the multiple acyl-CoA dehydrogenation defect (MADD, ethylmalonic/adipic acid syndrome).(More)
Carnitine is indispensable for energy metabolism, since it enables activated fatty acids to enter the mitochondria, where they are broken down via beta-oxidation. Carnitine is probably present in all animal species, and in numerous micro-organisms and plants. In mammals, carnitine homoeostasis is maintained by endogenous synthesis, absorption from dietary(More)
Peroxisomes of Saccharomyces cerevisiae are the exclusive site of fatty acid beta-oxidation. We have found that fatty acids reach the peroxisomal matrix via two independent pathways. The subcellular site of fatty acid activation varies with chain length of the substrate and dictates the pathway of substrate entry into peroxisomes. Medium-chain fatty acids(More)
Using principles developed by Kacser and Burns ((1973) in Rate Control of Biological Processes (Davies, D. D., ed) pp. 65-104, Cambridge University Press, London) and Heinrich and Rapoport ((1974) Eur. J. Biochem. 42, 97-105), inhibitor titration studies were carried out in order to quantify the amount of control (control strength) exerted by different(More)
Gene targeting in mice was used to investigate the unknown function of Scp2, encoding sterol carrier protein-2 (SCP2; a peroxisomal lipid carrier) and sterol carrier protein-x (SCPx; a fusion protein between SCP2 and a peroxisomal thiolase). Complete deficiency of SCP2 and SCPx was associated with marked alterations in gene expression, peroxisome(More)
Cardiolipin (CL) and phosphatidylglycerol (PG) are the major polyglycerophospholipids observed in mammalian tissues. CL is exclusively found in the inner mitochondrial membrane and is required for optimal function of many of the respiratory and ATP-synthesizing enzymes. The role of CL in oxidative phosphorylation is, however, not fully understood and(More)