Ronald A. Laskey

Learn More
Nuclear targeting sequences are essential for the transport of proteins into the nucleus. The seven-amino-acid nuclear targeting sequence of the SV40 large T antigen has been regarded as the model; however, many nuclear targeting sequences appear to be more complex. We suggest in this review that, despite this diversity, a consensus bipartite motif can be(More)
Point mutagenesis of the nuclear targeting sequence of nucleoplasmin has identified two interdependent basic domains. These are separated by 10 intervening "spacer" amino acids that tolerate point mutations and some insertions. Amino acids in both basic domains are required for nuclear targeting, and the transport defect of a mutation in one domain is(More)
We have purified a cytosolic protein from Xenopus eggs that is essential for selective protein import into the cell nucleus. The purified protein, named importin, promotes signal-dependent binding of karyophilic proteins to the nuclear envelope. We have cloned, sequenced, and expressed a corresponding cDNA. Importin shows 44% sequence identity with SRP1p, a(More)
BACKGROUND Selective protein import into the cell nucleus occurs in two steps: binding to the nuclear envelope, followed by energy-dependent transit through the nuclear pore complex. A 60 kD protein, importin, is essential for the first nuclear import step, and the small G protein Ran/TC4 is essential for the second. We have previously purified the 60kD(More)
The complex of importin-alpha and -beta is essential for nuclear protein import. It binds the import substrate in the cytosol, and the resulting trimeric complex moves through the nuclear pores, probably as a single entity. Importin-alpha provides the nuclear localization signal binding site, importin-beta the site of initial docking to the pore. Here we(More)
The import of nuclear proteins proceeds through the nuclear pore complex and requires nuclear localization signals (NLSs), energy and soluble factors, namely importin-alpha (M(r) 60K), importin-beta (90K) and Ran. Importin-alpha is primarily responsible for NLS recognition and is a member of a protein family that includes the essential yeast nuclear pore(More)
When injected into the cytoplasm of Vero cells, nucleoplasmin rapidly concentrates in a narrow layer around the nuclear envelope and then accumulates within the nucleus. Transport into the nucleus can be reversibly arrested at the perinuclear stage by metabolic inhibitors or by chilling. Nucleoplasmin-coated colloidal gold particles concentrate around the(More)
Importin-alpha mediates nuclear protein import by binding nuclear localization signals and importin-beta. We find approximately 30% of SRP1p, the yeast importin-alpha, in a nuclear complex with the Saccharomyces cerevisiae nuclear cap-binding protein complex (CBC). Similarly, a large fraction of Xenopus CBC is associated with importin-alpha in the nucleus.(More)
We demonstrate that cell-free extracts prepared from activated eggs of X. laevis by a method similar to that of Lohka and Masui initiate and complete semiconservative DNA replication of sperm nuclei and plasmid DNA. The efficiency of replication is comparable to that in the intact egg. Under optimal conditions 70%-100% of nuclei, and up to 38% of naked DNA(More)