Learn More
Two forms of genetic instability have been described in colorectal cancer: microsatellite instability and chromosomal instability. Microsatellite instability results from mutations in mismatch repair genes; chromosomal instability is the hallmark of many colorectal cancers, although it is not completely understood at the molecular level. As truncations of(More)
Overexpression of cell surface glycoproteins of the CD44 family is an early event in the colorectal adenoma-carcinoma sequence. This suggests a link with disruption of APC tumor suppressor protein-mediated regulation of beta-catenin/Tcf-4 signaling, which is crucial in initiating tumorigenesis. To explore this hypothesis, we analyzed CD44 expression in the(More)
Colorectal cancer arises through a gradual series of histological changes, each of which is accompanied by a specific genetic alteration. In general, an intestinal cell needs to comply with two essential requirements to develop into a cancer: it must acquire selective advantage to allow for the initial clonal expansion, and genetic instability to allow for(More)
BACKGROUND & AIMS Synchronous activation of the Wnt signaling pathway, mostly because of loss of function of the APC tumor suppressor, and of the oncogenic KRAS-signaling pathway is very frequent in colorectal cancer and is associated with poor prognosis. METHODS We have generated a compound transgenic mouse model, KRAS(V12G)/Apc(+/1638N), to recapitulate(More)
The adenomatous polyposis coli (APC) gene is considered as the true gatekeeper of colonic epithelial proliferation: It is mutated in the majority of colorectal tumors, and mutations occur at early stages of tumor development in mouse and man. These mutant proteins lack most of the seven 20-amino-acid repeats and all SAMP motifs that have been associated(More)
According to the classical interpretation of Knudson's 'two-hit' hypothesis for tumorigenesis, the two 'hits' are independent mutation events, the end result of which is loss of a tumor suppressing function. Recently, it has been shown that the APC (adenomatous polyposis coli) gene does not entirely follow this model. Both the position and type of the(More)
The Wnt signal-transduction pathway induces the nuclear translocation of membrane-bound beta-catenin (Catnb) and has a key role in cell-fate determination. Tight somatic regulation of this signal is essential, as uncontrolled nuclear accumulation of beta-catenin can cause developmental defects and tumorigenesis in the adult organism. The adenomatous(More)
A remarkable feature of regenerative processes is their ability to halt proliferation once an organ's structure has been restored. The Wnt signalling pathway is the major driving force for homeostatic self-renewal and regeneration in the mammalian intestine. However, the mechanisms that counterbalance Wnt-driven proliferation are poorly understood. Here we(More)
BACKGROUND Mouse models have shown that interleukin (IL)6 stimulates survival, proliferation and progression to cancer of intestinal epithelial cells via activation of signal transducers and activators of transcription 3 (STAT3). OBJECTIVE To investigate the expression of IL6/phosphorylated STAT3 (p-STAT3)/suppressor of cytokine signalling 3 (SOCS3) in(More)
In motile fibroblasts, stable microtubules (MTs) are oriented toward the leading edge of cells. How these polarized MT arrays are established and maintained, and the cellular processes they control, have been the subject of many investigations. Several MT "plus-end-tracking proteins," or +TIPs, have been proposed to regulate selective MT stabilization,(More)