Ron Peretz

Learn More
We show that in an n-player m-action strategic form game, we can obtain an approximate equilibrium by sampling any mixed-action equilibrium a small number of times. We study three notions of equilibrium: Nash, correlated and coarse correlated. For each one of them we obtain upper and lower bounds on the asymptotic (where max(m, n) → ∞) worst-case number of(More)
A planar set that contains a unit segment in every direction is called a Kakeya set. We relate these sets to a game of pursuit on a cycle Z n. A hunter and a rabbit move on the nodes of Z n without seeing each other. At each step, the hunter moves to a neighbouring vertex or stays in place, while the rabbit is free to jump to any node. Adler et al (2003)(More)
We prove the existence of approximate correlated equilibrium of support size polylogarithmic in the number of players and the number of actions per player. In particular, using the probabilistic method, we show that there exists a multiset of polylogarithmic size such that the uniform distribution over this multiset forms an approximate correlated(More)