Ron E. J. Mitchel

Learn More
We have previously shown that chronic exposure of plateau-phase C3H 10 T1/2 cells to (60)Co gamma radiation at doses as low as 10 cGy protected the cells against neoplastic transformation by a subsequent large acute radiation exposure. We have also shown that this induced resistance to neoplastic transformation correlated with an increased ability to repair(More)
We have monitored the end points of cellular survival, micronucleus formation and neoplastic transformation frequency to assess adaptation to ionizing radiation in the C3H 10T1/2 mouse embryo cell system. Plateau-phase cells were pre-exposed to an adapting dose of 0.1 to 1.5 Gy low-dose-rate gamma radiation 3.5 h prior to an acute challenge dose of 4 Gy. No(More)
The hypothesis that single low-dose exposures (0.025-0.5 Gy) to low-LET radiation given at either high (about 150 mGy/min) or low (1 mGy/min) dose rate would promote aortic atherosclerosis was tested in female C57BL/6J mice genetically predisposed to this disease (ApoE⁻/⁻). Mice were exposed either at an early stage of disease (2 months of age) and examined(More)
We have investigated the effect of the adaptive response on acute myeloid leukemia (AML) induced in CBA/Harwell mice by a chronic radiation exposure. Groups of mice irradiated with a total dose of 1. 0 Gy at two different chronic dose rates (0.5, 0.004 Gy/h) had similar frequencies of AML. Compared to control animals that did not develop AML, irradiation at(More)
Mice heterozygous for Trp53 are radiation-sensitive and cancer-prone, spontaneously developing a variety of cancer types. Osteosarcomas in the spine lead to paralysis, while lymphomas lead rapidly to death, distinct events that provide objective measures of latency. The effects of a single low-dose (10 or 100 mGy), low-dose-rate (0.5 mGy/min) (60)Co gamma(More)
Trp53 heterozygous mice are radiation-sensitive and cancer-prone. Groups of 7-8-week-old female Trp53 heterozygous mice were exposed to 4 Gy of 60Co gamma radiation at high (0.5 Gy/min) or low (0.5 mGy/min) dose rate. Other groups received 10 or 100 mGy at low dose rate 24 h prior to the 4-Gy dose. Tumor frequency and latency were measured over the animals'(More)
Low doses of ionizing radiation to cells and animals may induce adaptive responses that reduce the risk of cancer. However, there are upper dose thresholds above which these protective adaptive responses do not occur. We have now tested the hypothesis that there are similar lower dose thresholds that must be exceeded to induce protective effects in vivo. We(More)
We have compared dose-rate effects for gamma-radiation-induced apoptosis and micronucleus formation in human lymphocytes. Long-term assessment of individual radiation-induced apoptosis showed little intraindividual variation but significant interindividual variation. The effectiveness of radiation exposure to cause apoptosis or micronucleus formation was(More)
This work integrates two important cellular responses to low doses, detrimental bystander effects and apoptosis-mediated protective bystander effects, into a multistage model for chromosome aberrations and in vitro neoplastic transformation: the State-Vector Model. The new models were tested on representative data sets that show supralinear or U-shaped dose(More)
When exponentially growing diploid wild type Saccharomyces cerevisiae cells were subjected to a sudden rise in temperature (heat shock) they responded by increasing their resistance to the lethal effects of ultraviolet light. We have previously reported heat shock-induced increases in heat and ionizing radiation resistance. The shock-induced rise in(More)