Romano Matthys

Learn More
BACKGROUND Mice have become of increasing interest as experimental model for fracture studies. Due to their small size, most studies use simple pins for fracture stabilization, although insufficient rigidity of fixation critically affects fracture healing. Herein, we studied whether longitudinal fracture compression by an intramedullary screw represents a(More)
Small animal fracture models have gained increasing interest in fracture healing studies. To achieve standardized and defined study conditions, various variables must be carefully controlled when designing fracture healing experiments in mice or rats. The strain, age and sex of the animals may influence the process of fracture healing. Furthermore, the(More)
In most murine fracture models, the femur is stabilized by an intramedullary implant and heals predominantly through endochondral ossification. The aim of the present study was to establish a mouse model in which fractures heal intra-membraneously. Femur fractures of 16 SKH-mice were stabilized by an internal locking plate. Femur fractures of another 16(More)
Despite the growing knowledge on the mechanisms of fracture healing, delayed healing and non-union formation remain a major clinical challenge. Animal models are needed to study the complex process of normal and impaired fracture healing and to develop new therapeutic strategies. Whereas in the past mainly large animals have been used to study normal and(More)
BACKGROUND Melatonin, the major pineal hormone, is known to regulate distinct physiologic processes. Previous studies have suggested that it supports skeletal growth and bone formation, most probably by inhibiting bone resorption. There is no information, however, whether melatonin affects fracture healing. We therefore studied in a mouse femur fracture(More)
Knockout techniques enable us to expand our knowledge about bonerepair processes. Since they require the use of mice, such studies necessitate the development of special technologies. Mechano-biological reactions play a determining role in fracture healing, and therefore controlled conditions of stability are essential. Achieving fixation with a low-mass(More)
BACKGROUND Despite the increasing clinical problems with metaphyseal fractures, most experimental studies investigate the healing of diaphyseal fractures. Although the mouse would be the preferable species to study the molecular and genetic aspects of metaphyseal fracture healing, a murine model does not exist yet. Using a special locking plate system, we(More)
The various molecular mechanisms of cell regeneration and tissue healing can best be studied in mouse models with the availability of a wide range of monoclonal antibodies and gene-targeted animals. The influence of the mechanical stability of individual stabilization techniques on the molecular mechanisms of fracture healing has not been completely(More)
BACKGROUND Treatment of proximal humerus fractures in elderly patients is challenging because of reduced bone quality. We determined the in vitro characteristics of a new implant developed to target the remaining bone stock, and compared it with an implant in clinical use. METHODS Following osteotomy, left and right humeral pairs from cadavers were(More)
Sildenafil, a cyclic guanosine monophosphate (cGMP)-dependent phospodiesterase-5 inhibitor, has been shown to be a potent stimulator of angiogenesis through upregulation of pro-angiogenic factors and control of cGMP concentration. Herein, we determined whether sildenafil also influences angiogenic growth factor expression and bone formation during the(More)