Learn More
Double-stranded RNA (dsRNA) viruses are complex RNA processing machines that sequentially perform packaging, replication and transcription of their genomes. In order to characterize the assembly intermediates of such a machine we have developed an efficient in vitro assembly system for the procapsid of bacteriophage phi8. The major structural protein P1 is(More)
Many viruses package their genome into preformed capsids using packaging motors powered by the hydrolysis of ATP. The hexameric ATPase P4 of dsRNA bacteriophage phi12, located at the vertices of the icosahedral capsid, is such a packaging motor. We have captured crystallographic structures of P4 for all the key points along the catalytic pathway, including(More)
We present the assembly of the polymerase complex (procapsid) of a dsRNA virus from purified recombinant proteins. This molecular machine packages and replicates viral ssRNA genomic precursors in vitro. After addition of an external protein shell, these in vitro self-assembled viral core particles can penetrate the host plasma membrane and initiate a(More)
daughterless (da) has multiple functions in Drosophila embryonic development: maternal da activity is necessary for proper sex determination, and zygotic da activity is necessary for formation of the peripheral nervous system. We have cloned the region containing da and have found that five recessive lethal da mutations map to a single transcription unit. A(More)
Twinfilin is a ubiquitous and abundant actin monomer-binding protein that is composed of two ADF-H domains. To elucidate the role of twinfilin in actin dynamics, we examined the interactions of mouse twinfilin and its isolated ADF-H domains with G-actin. Wild-type twinfilin binds ADP-G-actin with higher affinity (K(D) = 0.05 microM) than ATP-G-actin (K(D) =(More)
Genome packaging is an essential step in virus replication and a potential drug target. Single-stranded RNA viruses have been thought to encapsidate their genomes by gradual co-assembly with capsid subunits. In contrast, using a single molecule fluorescence assay to monitor RNA conformation and virus assembly in real time, with two viruses from differing(More)
Genomes of complex viruses have been demonstrated, in many cases, to be packaged into preformed empty capsids (procapsids). This reaction is performed by molecular motors translocating nucleic acid against the concentration gradient at the expense of NTP hydrolysis. At present, the molecular mechanisms of packaging remain elusive due to the complex nature(More)
The spike structure of bacteriophage PRD1 is comprised of proteins P2, P5, and P31. It resembles the corresponding receptor-binding structure of adenoviruses. We show that purified recombinant protein P5 is an elongated (30 x 2.7 nm; R(h) = 5.5 nm), multidomain trimer which can slowly associate into nonamers. Cleavage of the 340 amino acid long P5 with(More)
Chlorosomes of green photosynthetic bacteria constitute the most efficient light harvesting complexes found in nature. In addition, the chlorosome is the only known photosynthetic system where the majority of pigments (BChl) is not organized in pigment-protein complexes but instead is assembled into aggregates. Because of the unusual organization, the(More)
The bond stretching vibration of the cysteine sulfhydryl (SH) group in a typical protein generates a Raman band in the spectral interval 2500-2600 cm-1, a region devoid of interference from any other fundamental mode of vibration of the protein. The relatively high Raman cross section associated with the S-H stretching vibration, the sensitivity of the(More)