Learn More
It is well recognized that base sequence exerts a significant influence on the properties of DNA and plays a significant role in protein-DNA interactions vital for cellular processes. Understanding and predicting base sequence effects requires an extensive structural and dynamic dataset which is currently unavailable from experiment. A consortium of(More)
Definition of the unfolded state of proteins is essential for understanding their stability and folding on biological timescales. Here, we find that under near physiological conditions the configurational ensemble of the unfolded state of the simplest protein structure, polyalanine alpha-helix, cannot be described by the commonly used Flory random coil(More)
Molecular dynamics (MD) simulations including water and counterions on B-DNA oligomers containing all 136 unique tetranucleotide basepair steps are reported. The objective is to obtain the calculated dynamical structure for at least two copies of each case, use the results to examine issues with regard to convergence and dynamical stability of MD on DNA,(More)
We describe herein a computationally intensive project aimed at carrying out molecular dynamics (MD) simulations including water and counterions on B-DNA oligomers containing all 136 unique tetranucleotide base sequences. This initiative was undertaken by an international collaborative effort involving nine research groups, the "Ascona B-DNA Consortium"(More)
Conformational properties of a UV-damaged DNA decamer containing a cis.syn cyclobutane thymine dimer (PD) have been investigated by molecular dynamics (MD) simulations. Results from MD simulations of the damaged decamer DNA show a kink of approximately 21.7 degrees at the PD damaged site and a disruption of H bonding between the 5'-thymine of the PD and its(More)
The roles of conserved residues in transmembrane helices (TMs) of G protein-coupled receptors have not been well established. A computer-generated model of the thyrotropin-releasing hormone receptor (TRH-R) indicated that conserved Asp-71 (TM-2) could interact with conserved asparagines 316 (TM-7) and 43 (TM-1). To test this model, we constructed mutant(More)
We present the results of microsecond molecular dynamics simulations carried out by the ABC group of laboratories on a set of B-DNA oligomers containing the 136 distinct tetranucleotide base sequences. We demonstrate that the resulting trajectories have extensively sampled the conformational space accessible to B-DNA at room temperature. We confirm that(More)
The molecular architecture of bacteriorhodopsin (BR) is commonly regarded as a structural template for the three-dimensional structure of membrane receptors that are functionally coupled to guanine nucleotide-binding regulatory proteins (GPCR). More recently, specific molecular models of such GPCR were constructed on the basis of the functional and(More)
Seven transmembrane (TM) spanning, G protein-coupled receptors (GPCRs) appear to bind large glycoprotein hormones predominantly within their extracellular domains, small nonpeptidic ligands within the TM helical bundle, and peptide ligands within the extracellular domains and TM bundle. The tripeptide thyrotropin-releasing hormone (TRH, pyroGlu-His-ProNH2)(More)
In RNA interference, a guide strand derived from a short dsRNA such as a microRNA (miRNA) is loaded into Argonaute, the central protein in the RNA Induced Silencing Complex (RISC) that silences messenger RNAs on a sequence-specific basis. The positions of any mismatched base pairs in an miRNA determine which Argonaute subtype is used. Subsequently, the(More)