Learn More
Thyrotropin-releasing hormone (TRH) receptor (TRH-R) complementary DNAs have been cloned from several species. The deduced amino acid sequences are compatible with TRH-R being a seven-transmembrane-spanning G protein-coupled receptor. These complementary DNAs and reagents derived from them have permitted detailed study of TRH-R biology at the molecular and(More)
The detection of sweet-tasting compounds is mediated in large part by a heterodimeric receptor comprised of T1R2+T1R3. Lactisole, a broad-acting sweet antagonist, suppresses the sweet taste of sugars, protein sweeteners, and artificial sweeteners. Lactisole's inhibitory effect is specific to humans and other primates; lactisole does not affect responses to(More)
It is well recognized that base sequence exerts a significant influence on the properties of DNA and plays a significant role in protein-DNA interactions vital for cellular processes. Understanding and predicting base sequence effects requires an extensive structural and dynamic dataset which is currently unavailable from experiment. A consortium of(More)
The von Hippel-Lindau (VHL) gene product, pVHL, targets the alpha subunit of the hypoxia-inducible transcription factor (HIF-alpha) for ubiquitin-dependent degradation. This tumor suppressor function is mediated by the alpha- and beta-domains responsible for assembling the pVHL E3 ubiquitin ligase complex and for recognizing the prolyl-hydroxylated(More)
2-Aminopurine (2AP) is an analogue of adenine that has been utilized widely as a fluorescence probe of protein-induced local conformational changes in DNA. Within a DNA strand, this fluorophore demonstrates characteristic decreases in quantum yield and emission decay lifetime that vary sensitively with base sequence, temperature, and helix conformation but(More)
The sweet taste receptor is a heterodimer of two G protein coupled receptors, T1R2 and T1R3. This discovery has increased our understanding at the molecular level of the mechanisms underlying sweet taste. Previous experimental studies using sweet receptor chimeras and mutants show that there are at least three potential binding sites in this heterodimeric(More)
The artificial sweetener cyclamate tastes sweet to humans, but not to mice. When expressed in vitro, the human sweet receptor (a heterodimer of two taste receptor subunits: hT1R2 + hT1R3) responds to cyclamate, but the mouse receptor (mT1R2 + mT1R3) does not. Using mixed-species pairings of human and mouse sweet receptor subunits, we determined that(More)
SCF (Skp1 x CUL1 x F-box protein x ROC1) E3 ubiquitin ligase and Cdc34 E2-conjugating enzyme catalyze polyubiquitination in a precisely regulated fashion. Here, we describe biochemical evidence suggesting an autoinhibitory role played by the human CUL1 ECTD (extreme C-terminal domain; spanning the C-terminal 50 amino acids), a region that is predicted to(More)
Thyrotropin-releasing hormone (TRH), like most small ligands, appears to bind within the seven transmembrane-spanning helices (TMs) of its G protein-coupled receptor (TRH-R). A role for the extracellular loops (ECLs) of TRH-R has not been established. We substituted residues in the ECLs of TRH-R and show that Tyr-181 is important for high-affinity binding(More)
The molecular architecture of bacteriorhodopsin (BR) is commonly regarded as a structural template for the three-dimensional structure of membrane receptors that are functionally coupled to guanine nucleotide-binding regulatory proteins (GPCR). More recently, specific molecular models of such GPCR were constructed on the basis of the functional and(More)