Learn More
We perform a mathematical analysis of the classical computational complexity of two genuine quantum-mechanical problems, which are inspired in the calculation of the expected magnetizations and the entanglement between subsystems for a quantum spin system. These problems, which we respectively call SES and SESSP, are specified in terms of pure(More)
We investigate the stability of the topological phase of the toric code model in the presence of a uniform magnetic field by means of variational and high-order series expansion approaches. We find that when this perturbation is strong enough, the system undergoes a topological phase transition whose first- or second-order nature depends on the field(More)
In this paper the geometric entanglement (GE) of systems in one spatial dimension (1D) and in the thermodynamic limit is analyzed focusing on two aspects. First, we reexamine the calculation of the GE for translation-invariant matrix product states (MPSs) in the limit of infinite system size. We obtain a lower bound to the GE which collapses to an equality(More)
  • 1