Roman Kamnik

Learn More
This paper describes the design and evaluation of a miniature kinematic sensor based three dimensional (3D) joint angle measurement technique. The technique uses a combination of rate gyroscope, accelerometer and magnetometer sensor signals. The technique enables 3D inter-segment joint angle measurement and could be of benefit in a variety of applications(More)
This paper presents a gait phase detection algorithm for providing feedback in walking with a robotic prosthesis. The algorithm utilizes the output signals of a wearable wireless sensory system incorporating sensorized shoe insoles and inertial measurement units attached to body segments. The principle of detecting transitions between gait phases is based(More)
The sit-to-stand transfer of paraplegic patients using functional electrical stimulation (FES) of the knee extensors and arm support was analyzed in the study. In a group of 8 completely paralyzed subjects who were trained FES users, kinematic and dynamic parameters were recorded during standing up trials. A contactless optical system was used to assess the(More)
The paper deals with the application of model reference adaptive control to robot impedance control, which is actually a technique of steering the end-effector on a prescribed path and satisfying a prescribed dynamic relationship between the force and the end-effector position. Due to unknown parameters of the environment (stiffness, exact position), a(More)
The paper presents the design and validation of a three-segment human body model. The model is aimed at the reconstruction of motion trajectories of the shank, thigh and HAT (Head-Arms-Trunk) segments in sit-to-stand-motion using low cost inertial sensors. For this purpose the Extended Kalman filter is applied for fusion of model data and data acquired(More)
This paper presents analysis of the standing–up manoeuvre in paraplegia considering the body supportive forces as a potential feedback source in FES-assisted standing–up. The analysis investigates the significance of particular feedback signals to the human body centreof-mass (COM) trajectory reconstruction. Two nonlinear empirical modeling methods are(More)
The purpose of the study was to present a method for the assessment of finger joint torques in two-fingered precision grips. The static analysis of various grips is important for the analysis of the mechanics of a human hand and the functional evaluation of grasping. We have built a grip-measuring device assessing the endpoint forces of two-oppositional(More)
The aim of this study was to perform a preliminary evaluation of a new method for therapeutic exercise of grasping in patients with upper limb disability. The new method combines active voluntary exercise augmented with electrical stimulation and controlled by using force feedback. The feedback has two functions: automatic control of the intensity of(More)
Measuring the kinematic parameters in unconstrained human motion is becoming crucial for providing feedback information in wearable robotics and sports monitoring. This paper presents a novel sensory fusion algorithm for assessing the orientations of human body segments in long-term human walking based on signals from wearable sensors. The basic idea of the(More)
The suitability of multichannel functional electrical stimulation (FES) during the standing-up manoeuvre for therapeutic home use was investigated. Two spinal cord-injured subjects (SCI) participated in the study. Ankle plantar flexors, knee extensors and hip extensors were stimulated. The amplitude of the stimulation pulses depended on the current phase of(More)