Roman Gr. Maev

Learn More
Chest percussion is a traditional technique used for the physical examination of pulmonary injuries and diseases. It is a method of tapping body parts with fingers or small instruments to evaluate the size, consistency, borders, and presence of fluid/air in the lungs and abdomen. Percussion has been successfully used for the diagnosis of such potentially(More)
For decades there has been an ongoing search for clinically acceptable methods for the accurate, non-invasive diagnosis and prognosis of periodontitis. There are several well-known inherent drawbacks with current clinical procedures. The purpose of this review is to summarize some of the newly emerging diagnostic approaches, namely, infrared spectroscopy,(More)
Quantitative evaluation of human tooth structural elements, revealed in acoustic images, has been carried out. It has been shown that tissue elements with different acoustic impedances differed in acoustic images by intensity of grey color, and also feature with different longitudinal sound velocities (C(L)). In the layer of mantle dentin, C(L) is 7% to 8%(More)
This study presents a novel approach to measure the enamel thickness potentially applicable to the veneer placing procedure. All experiments have been carried out on the extracted human teeth, using a high frequency ultrasonic transducer (50 MHz, Sonix, Springfield, VA, USA). The enamel thickness measurement results obtained with high positional accuracy by(More)
This paper examines the utilization of the time reversal matched filtering method to resolve the location of an acoustic point source beneath a skull phantom (variable thickness layer), without the removal of this layer. This acoustical process is examined experimentally in a water tank immersion system containing an acoustic source, a custom-made skull(More)
A new method for the detection of void-disbonds at the interfaces of adhesively bonded joins is considered. Based on a simple plane wave model, the output waveform is presented as a sum of two responses associated with the reflection of the ultrasonic wave at the first metal-adhesive interface and the second metal-adhesive interface, respectively. The(More)
We present a new wide-aperture, line-focused ultrasonic material characterization system. The foci of the transmitting and receiving transducers are located in the specimen-immersion liquid interface; and the output voltage V(x, t) of the system is recorded as a function of the lateral position of the receiving transducer. The two-dimensional spectrum of(More)
Traditional frequency based signal representation intends to decompose signals into superposition of sinusoids. Recently it has been shown that signals with oscillations can be well described via a new nonlinear signal decomposition method based on the concept of resonance. The objective of this paper is to introduce a resonance based analysis of A-scan(More)
Noninvasive methods of near-infrared, short-wave infrared, and thermographic inspection of artwork are described in this article and compared in terms of their ability to reveal both hidden graphite underdrawings and subsurface degradations. This inspection aids the understanding of the artist’s work methods and locates hidden areas of damage. While all(More)
The role of non-destructive material characterization and NDT is changing at a rapid rate, continuing to evolve alongside the dramatic development of novel techniques based on the principles of high-resolution imaging. The modern use of advanced optical, thermal, ultrasonic, laser-ultrasound, acoustic emission, vibration, electro-magnetic, and X-ray(More)