Roman Gorelik

Learn More
Cell migration requires the generation of branched actin networks that power the protrusion of the plasma membrane in lamellipodia. The actin-related proteins 2 and 3 (Arp2/3) complex is the molecular machine that nucleates these branched actin networks. This machine is activated at the leading edge of migrating cells by Wiskott-Aldrich syndrome protein(More)
The mechanism by which cells control directional persistence during migration is a major question. However, the common index measuring directional persistence, namely the ratio of displacement to trajectory length, is biased, particularly by cell speed. An unbiased method is to calculate direction autocorrelation as a function of time. This function depends(More)
Branched actin networks generated by the Arp2/3 complex provide the driving force for leading edge protrusion in migrating cells. We recently identified Arpin, a protein that inhibits the Arp2/3 complex in lamellipodia. Arpin is activated by the small GTPase Rac, which triggers lamellipodium formation, and thus Arpin renders protrusions unstable. A(More)
  • 1