Roman G. Efremov

Learn More
UNLABELLED The PLATINUM (Protein-Ligand ATtractions Investigation NUMerically) web service is designed for analysis and visualization of hydrophobic/hydrophilic properties of biomolecules supplied as 3D-structures. Furthermore, PLATINUM provides a number of tools for quantitative characterization of the hydrophobic/hydrophilic match in biomolecular(More)
The major representatives of Elapidae snake venom, cytotoxins (CTs), share similar three-fingered fold and exert diverse range of biological activities against various cell types. CT-induced cell death starts from the membrane recognition process, whose molecular details remain unclear. It is known, however, that the presence of anionic lipids in cell(More)
Molecular surfaces are the key players in biomolecular recognition and interactions. Nowadays, it is trivial to visualize a molecular surface and surface-distributed properties in three-dimensional space. However, such a representation trends to be biased and ambiguous in case of thorough analysis. We present a new method to create 2D spherical projection(More)
SUMMARY Here we present PREDDIMER, a web tool for prediction of dimer structure of transmembrane (TM) helices. PREDDIMER allows (i) reconstruction of a number of dimer structures for given sequence(s) of TM protein fragments, (ii) ranking and filtering of predicted structures according to respective values of a scoring function, (iii) visualization of(More)
Most standard molecular docking algorithms take into account only ligand flexibility, while numerous studies demonstrate that receptor flexibility may be also important. While some efficient methods have been proposed to take into account local flexibility of protein side chains, the influence of large-scale domain motions on the docking results still(More)
Arthropod venoms feature the presence of cytolytic peptides believed to act synergetically with neurotoxins to paralyze prey or deter aggressors. Many of them are linear, i.e., lack disulfide bonds. When isolated from the venom, or obtained by other means, these peptides exhibit common properties. They are cationic; being mostly disordered in aqueous(More)
To gain success in the evolutionary "arms race," venomous animals such as scorpions produce diverse neurotoxins selected to hit targets in the nervous system of prey. Scorpion α-toxins affect insect and/or mammalian voltage-gated sodium channels (Na(v)s) and thereby modify the excitability of muscle and nerve cells. Although more than 100 α-toxins are known(More)
Structure activity relationships were investigated for membrane-lytic peptides (MLP) Ltc1 and Ltc2a from the latarcin family. The peptides were studied via long-term molecular dynamics (MD) simulations in different membrane environments (detergent micelles, mixed lipid bilayers mimiking eukaryotic and bacterial membranes). The calculated structure of Ltc2a(More)
Self-association of two hydrophobic alpha-helices is studied via unrestrained Monte Carlo (MC) simulations in a hydrophobic slab described by an effective potential. The system under study represents two transmembrane (TM) segments of human glycophorin A (GpA), which form homo-dimers in membranes. The influence of TM electrostatic potential, thickness and(More)
Phosphorylation of histidine-containing proteins is a key step in the mechanism of many phosphate transfer enzymes (kinases, phosphatases) and is the first stage in a wide variety of signal transduction cascades in bacteria, yeast, higher plants, and mammals. Studies of structural and dynamical aspects of such enzymes in the phosphorylated intermediate(More)