Romain Modeste Nguimdo

Learn More
Semiconductor lasers subject to delayed optical feedback have recently shown great potential in solving computationally hard tasks. By optically implementing a neuro-inspired computational scheme, called reservoir computing, based on the transient response to optical data injection, high processing speeds have been demonstrated. While previous efforts have(More)
We investigate the possibility of concealing the time-delay signatures in semiconductor ring lasers (SRLs) with external feedback. Through the autocorrelation and delayed mutual information, we report different scenarios leading to simultaneous time-delay concealment both in the intensity and the phase dynamics of such systems. In particular, the fact that(More)
Optical implementations of reservoir computing systems are very promising because of their high processing speeds and the possibility to process several tasks in parallel. These systems can be implemented using semiconductor lasers subject to optical delayed feedback and optical injection. While the amount of the feedback/injection can be easily controlled,(More)
In this brief, we numerically demonstrate a photonic delay-based reservoir computing system, which processes, in parallel, two independent computational tasks even when the two tasks have unrelated input streams. Our approach is based on a single-longitudinal mode semiconductor ring laser (SRL) with optical feedback. The SRL emits in two directional optical(More)
The use of the postprocessing method consisting of bitwise Exclusive-OR and least significant bits extraction to generate random bit sequences typically requires two distinct chaotic outputs. While the two signals are, in general, generated using two separated devices, e.g. two Fabry-Perot lasers, a single semiconductor ring laser can be used as an(More)
We report on an integrated approach to obtain multiwavelength emission from semiconductor ring lasers with filtered optical feedback. The filtered feedback is realized on-chip employing two arrayed-waveguide gratings to split/recombine light into different wavelength channels. Through experimental observations and numerical simulations, we find that the(More)
We consider an electro-optic phase chaos system with two feedback loops organized in a parallel configuration such that the dynamics of one of the loops remains internal. We show that this configuration intrinsically conceals in the transmitted variable the internal delay times, which are critical for decoding. The scheme also allows for the inclusion, in a(More)
We introduce a scheme that integrates a digital key in a phase-chaos electro-optical delay system for optical chaos communications. A pseudorandom binary sequence (PRBS) is mixed within the chaotic dynamics in a way that a mutual concealment is performed; e.g., the time delay is hidden by the binary sequence, and the PRBS is also masked by the chaos. In(More)
Reservoir computing (RC) systems are computational tools for information processing that can be fully implemented in optics. Here, we experimentally and numerically show that an optically pumped laser subject to optical delayed feedback can yield similar results to those obtained for electrically pumped lasers. Unlike with previous implementations, the(More)
We consider a semiconductor laser with external optical feedback operating at a regime for which the delay time signature is extremely difficult to identify from the analysis of the intensity time series, using standard techniques. We show that such a delay signature can be successfully retrieved by computing the same quantifiers from the phase, the real or(More)