Romain Maciejko

Learn More
Optical micro-angiography (OMAG) was developed to achieve volumetric imaging of the microstructures and dynamic cerebrovascular blood perfusion in mice with capillary level resolution and high signal-to-background ratio. In this paper, we present a high-speed and high-sensitivity OMAG imaging system by using an InGaAs line scan camera and broadband light(More)
Histology of biological specimens is largely limited to investigating two-dimensional structure because of the sectioning required to produce optically thin samples for conventional microscopy. With the advent of three-dimensional optical imaging technologies such as optical coherence tomography (OCT), diffuse optical tomography (DOT), and mul-tiphoton(More)
One of the present challenges in optical coherence tomography (OCT) is the visualization of deeper structural morphology in biological tissues. Owing to a reduced scattering, a larger imaging depth can be achieved by using longer wavelengths. In this work, we analyze the OCT imaging depth at wavelengths around 1300 nm and 1600 nm by comparing the scattering(More)
The modulation bandwidth enhancement of distributed reflector (DR) lasers with wirelike active regions utilizing optical injection locking is demonstrated both theoretically and experimentally. By the rate equation analysis, it is shown that DR lasers with wirelike active regions realize a low optical injection power and a large bandwidth enhancement under(More)
  • 1