Rolf S Arvidson

Learn More
The deep-sea vestimentiferan tubeworm Lamellibrachia luymesi forms large aggregations at hydrocarbon seeps in the Gulf of Mexico that may persist for over 250 y. Here, we present the results of a diagenetic model in which tubeworm aggregation persistence is achieved through augmentation of the supply of sulfate to hydrocarbon seep sediments. In the model,(More)
Plasmon resonance is expected to occur in metallic and doped semiconducting carbon nanotubes in the terahertz frequency range, but its convincing identification has so far been elusive. The origin of the terahertz conductivity peak commonly observed for carbon nanotube ensembles remains controversial. Here we present results of optical, terahertz, and(More)
Vertical scanning interferometry and XPS show the reaction of CaCO3 with the hydration retarder nitrilo-tris-(methylene)phosphonic acid follows a pathway of dissolution of the calcium followed by precipitation of a calcium phosphonate; subsequent surface reorganization/restructuring of the calcium phosphonate exposes the underlying CaCO3 for further(More)
Single-walled carbon nanotubes have been functionalized and the specific surface areas of the functionalized nanotubes measured. Contrary to expectations, functionalization leads to a decrease in specific surface area compared to that of the unfunctionalized nanotubes. Treatment with a concentrated 1:1 nitric/sulfuric acid mixture followed by(More)
We apply common image enhancement principles and sub-pixel sample positioning to achieve a significant enhancement in the spatial resolution of a vertical scanning interferometer. We illustrate the potential of this new method using a standard atomic force microscope calibration grid and other materials having motifs of known lateral and vertical(More)
D. T. Morris,1 C. L. Pint,2,3 R. S. Arvidson,4,* A. Lüttge,2,4,* R. H. Hauge,2 A. A. Belyanin,5 G. L. Woods,1 and J. Kono1,6,† 1Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA 2Department of Chemistry, Rice University, Houston, Texas 77005, USA 3Department of Mechanical Engineering, Vanderbilt University,(More)
This project aims to demonstrate techniques for quantitatively predicting the combined seismic signatures of CO2 saturation, chemical changes to the rock frame, and pore pressure. This will be accomplished (i) by providing a better understanding the reaction kinetics of CO2-bearing reactive fluids with rock-forming minerals, and (ii) by quantifying how the(More)
  • 1