Learn More
We present the cloning and characterization of two novel calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4, that are enriched in the testis and brain, respectively. We compare and contrast the steady state and kinetic properties of these beta subunits with the previously cloned mouse beta1 (mKCNMB1) and the human beta2 subunit(More)
Small arteries exhibit tone, a partially contracted state that is an important determinant of blood pressure. In arterial smooth muscle cells, intracellular calcium paradoxically controls both contraction and relaxation. The mechanisms by which calcium can differentially regulate diverse physiological responses within a single cell remain unresolved.(More)
The primary structures of human neuronal alpha 1, alpha 2, and beta subunits of a voltage-dependent Ca2+ channel were deduced by characterizing cDNAs. The alpha 1 subunit (alpha 1D) directs the recombinant expression of a dihydropyridine-sensitive L-type Ca2+ channel when coexpressed with the beta (beta 2) and the alpha 2 (alpha 2b) subunits in Xenopus(More)
Clonogenic neural stem cells (NSCs) are self-renewing cells that maintain the capacity to differentiate into brain-specific cell types, and may also replace or repair diseased brain tissue. NSCs can be directly isolated from fetal or adult nervous tissue, or derived from embryonic stem cells. Here, we describe the efficient conversion of human adult bone(More)
Complementary DNAs were isolated and used to deduce the primary structures of the alpha 1 and alpha 2 subunits of the dihydropyridine-sensitive, voltage-dependent calcium channel from rabbit skeletal muscle. The alpha 1 subunit, which contains putative binding sites for calcium antagonists, is a hydrophobic protein with a sequence that is consistent with(More)
Mesenchymal stem cells are multipotent cells able to differentiate into different mesenchymal lineages. Studies in the past had suggested that two of these mesenchymal differentiation directions, the chondrogenic and the myogenic differentiation, are negatively regulated by the transcription factor NF-kappaB. Although osteogenic differentiation has been(More)
Large conductance (BK-type) calcium-activated potassium channels utilize alternative splicing and association with accessory beta subunits to tailor BK channel properties to diverse cell types. Two important modulators of BK channel gating are the neuronal-specific beta4 accessory subunit (beta4) and alternative splicing at the stress axis hormone-regulated(More)
Human adult bone marrow-derived mesodermal stromal cells (hMSCs) are able to differentiate into multiple mesodermal tissues, including bone and cartilage. There is evidence that these cells are able to break germ layer commitment and differentiate into cells expressing neuroectodermal properties. There is still debate about whether this results from cell(More)
Implant surfaces should ideally be designed to promote the attachment of target tissue cells; at the same time, they should prevent bacterial adhesion, achievable through modification strategies comprising three lines of defense. As the first criterion, selective adhesion can be realized by means of non-adhesive coatings that can be functionalized with(More)
OBJECTIVE To develop and to characterize a human preadipocyte cell strain with high capacity for adipose differentiation serving as a model for studying human adipocyte development and metabolism in vitro. METHODS Cells were derived from the stromal cells fraction of subcutaneous adipose tissue of an infant with Simpson-Golabi-Behmel syndrome (SGBS).(More)