Learn More
The structure determination of protein-protein complexes is a rather tedious and lengthy process, by both NMR and X-ray crystallography. Several methods based on docking to study protein complexes have also been well developed over the past few years. Most of these approaches are not driven by experimental data but are based on a combination of energetics(More)
Tet proteins oxidize 5-methylcytosine (mC) to generate 5-hydroxymethyl (hmC), 5-formyl (fC), and 5-carboxylcytosine (caC). The exact function of these oxidative cytosine bases remains elusive. We applied quantitative mass-spectrometry-based proteomics to identify readers for mC and hmC in mouse embryonic stem cells (mESC), neuronal progenitor cells (NPC),(More)
The RING finger protein CNOT4 is a component of the CCR4-NOT complex. This complex is implicated in repression of RNA polymerase II transcription. Here we demonstrate that CNOT4 functions as a ubiquitin-protein ligase (E3). We show that the unique C4C4 RING domain of CNOT4 interacts with a subset of ubiquitin-conjugating enzymes (E2s). Using NMR(More)
Interaction of regulatory DNA binding proteins with their target sites is usually preceded by binding to nonspecific DNA. This speeds up the search for the target site by several orders of magnitude. We report the solution structure and dynamics of the complex of a dimeric lac repressor DNA binding domain with nonspecific DNA. The same set of residues can(More)
The structure of the translational initiation factor IF1 from Escherichia coli has been determined with multidimensional NMR spectroscopy. Using 1041 distance and 78 dihedral constraints, 40 distance geometry structures were calculated, which were refined by restrained molecular dynamics. From this set, 19 structures were selected, having low constraint(More)
The molecular chaperone Hsp90 is a protein folding machine that is conserved from bacteria to man. Human, cytosolic Hsp90 is dedicated to folding of chiefly signal transduction components. The chaperoning mechanism of Hsp90 is controlled by ATP and various cochaperones, but is poorly understood and controversial. Here, we characterized the Apo and ATP(More)
The three-dimensional structure of the fMet-tRNA(fMet) -binding domain of translation initiation factor IF2 from Bacillus stearothermophilus has been determined by heteronuclear NMR spectroscopy. Its structure consists of six antiparallel beta-strands, connected via loops, and forms a closed beta-barrel similar to domain II of elongation factors EF-Tu and(More)
With the amount of genetic information available, a lot of attention has focused on systems biology, in particular biomolecular interactions. Considering the huge number of such interactions, and their often weak and transient nature, conventional experimental methods such as X-ray crystallography and NMR spectroscopy are not sufficient to gain structural(More)
The structure in solution of crambin, a small protein of 46 residues, has been determined from 2D NMR data using an iterative relaxation matrix approach (IRMA) together with distance geometry, distance bound driven dynamics, molecular dynamics, and energy minimization. A new protocol based on an "ensemble" approach is proposed and compared to the more(More)
Titrations of Escherichia coli translation initiation factor IF3, isotopically labeled with 15N, with 30S ribosomal subunits were followed by NMR by recording two-dimensional (15N,1H)-HSQC spectra. In the titrations, intensity changes are observed for cross peaks belonging to amides of individual amino acids. At low concentrations of ribosomal subunits,(More)